oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the performance of gas sensor arrays in open sampling systems using inhibitory support vector machines
University of California, San Diego. (BioCircuits Institute)
University of California, San Diego. (BioCircuits Institute)
University of California, San Diego. (BioCircuits Institute)
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS Research Centre, Mobile Robotics and Olfaction Lab)ORCID-id: 0000-0003-0195-2102
Visa övriga samt affilieringar
2013 (Engelska)Ingår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, Vol. 185, nr August 2013, 462-477 s.Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Chemo-resistive transduction presents practical advantages for capturing the spatio-temporal and structural organization of chemical compounds dispersed in different human habitats. In an open sampling system, however, where the chemo-sensory elements are directly exposed to the environment being monitored, the identification and monitoring of chemical substances present a more difficult challenge due to the dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection. The success of such actively changeable practice is influenced by the adequate implementation of algorithmically driven formalisms combined with the appropriate design of experimental protocols. On the basis of this functional joint-formulation, in this study we examine an innovative methodology based on the inhibitory processing mechanisms encountered in the structural assembly of the insect's brain, namely Inhibitory Support Vector Machine (ISVM) applied to training a sensor array platform and evaluate its capabilities relevant to odor detection and identification under complex environmental conditions. We generated - and made publicly available - an extensive and unique dataset with a chemical detection platform consisting of 72 conductometric metal-oxide based chemical sensors in a custom-designed wind tunnel test-bed facility to test our methodology. Our findings suggest that the aforementioned methodology can be a valuable tool to guide the decision of choosing the training conditions for a cost-efficient system calibration as well as an important step toward the understanding of the degradation level of the sensory system when the environmental conditions change.

Ort, förlag, år, upplaga, sidor
2013. Vol. 185, nr August 2013, 462-477 s.
Nyckelord [en]
Metal-oxide sensors, Support Vector Machines, System calibration, Open sampling system, Sensor array, Electronic nose
Nationell ämneskategori
Robotteknik och automation Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-30223DOI: 10.1016/j.snb.2013.05.027OAI: oai:DiVA.org:oru-30223DiVA: diva2:641040
Tillgänglig från: 2013-08-15 Skapad: 2013-08-15 Senast uppdaterad: 2017-10-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Trincavelli, Marco
Av organisationen
Institutionen för naturvetenskap och teknik
I samma tidskrift
Sensors and actuators. B, Chemical
Robotteknik och automationDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

Altmetricpoäng

Totalt: 290 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf