Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Model choice in Bayesian VAR models
Örebro universitet, Handelshögskolan vid Örebro Universitet.
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
Örebro: Örebro university , 2014.
Serie
Örebro Studies in Statistics, ISSN 1651-8608
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
Statistik
Identifikatorer
URN: urn:nbn:se:oru:diva-34612OAI: oai:DiVA.org:oru-34612DiVA, id: diva2:710794
Disputation
2014-06-02, Forumhuset, Biografen, Örebro universitet, Fakultetsgatan 1, Örebro, 13:15 (Engelska)
Opponent
Tillgänglig från: 2014-04-08 Skapad: 2014-04-08 Senast uppdaterad: 2017-10-17Bibliografiskt granskad
Delarbeten
1. Model averaging and variable selection in VAR models
Öppna denna publikation i ny flik eller fönster >>Model averaging and variable selection in VAR models
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Bayesian model averaging and model selection is based on the marginal likelihoods of the competing models. This can, however, not be used directly in VAR models when one of the issues is which - and how many - variables to include in the model since the likelihoods will be for different groups of variables and not directly comparable. One possible solution is to consider the marginal likelihood for a core subset of variables that are always included in the model. This is similar in spirit to a recent proposal for forecast combination based on the predictive likelihood. The two approaches are contrasted and their performance is evaluated in a simulation study and a forecasting exercise. 

Nyckelord
Bayesian model averaging, marginalized likelihood, predictive likelihood
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
Statistik
Identifikatorer
urn:nbn:se:oru:diva-35873 (URN)
Tillgänglig från: 2014-08-07 Skapad: 2014-08-07 Senast uppdaterad: 2017-10-17Bibliografiskt granskad
2. Bayesian forecasting combination in VAR models with many predictors
Öppna denna publikation i ny flik eller fönster >>Bayesian forecasting combination in VAR models with many predictors
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

This paper is motivated by the findings of our previous work, that is forecasting VAR models in the cases of small and medium-sized datasets, both marginalized marginal likelihood and predictive likelihood based averaging approaches tend to produce superior forecasts than the Bayesian VAR methods using shrinkage priors. With an efficient reversible-jump MCMC algorithm, We extend the forecast combination and model averaging of VAR models to the context of large datasets (more than hundred predictors), and consider a range of competitive alternative methods to compare and examine their forecast performance. Our empirical results show that the Bayesian model averaging approach outperforms the various alternatives.

Nyckelord
Bayesian model averaging, large datasets, marginalized marginal likelihood, reversible-jump MCMC
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
Statistik
Identifikatorer
urn:nbn:se:oru:diva-35874 (URN)
Tillgänglig från: 2014-08-07 Skapad: 2014-08-07 Senast uppdaterad: 2017-10-17Bibliografiskt granskad
3. Bayesian forecasting using reduced rank VARs
Öppna denna publikation i ny flik eller fönster >>Bayesian forecasting using reduced rank VARs
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Reduced rank regression has a long tradition as a technique to achieve a parsimonious parameterization in multivariate regression models. Recently this has been applied in the Bayesian VAR framework where the rich parameterization is a common concern in applied work. We advocate a parameterization of the reduced rank VAR which leads to a natural interpretation in terms of a dynamic factor model. Without additional restrictions on the parameters the reduced rank model is unidentified and we consider two identification schemes. The traditional ad-hoc identification with the first rows of one of the reduced rank parameter matrices being the identity matrix and a semi-orthogonal identification originally proposed in the context of cointegrated VAR models with the advantage that it does not depend on the ordering of the variables. Borrowing from the cointegration literature, we propose efficient MCMC algorithms for the evaluation of the posterior distribution given the two identification schemes. The determination of the rank of the reduced rank VAR is an important practical issue and we study the performance of different criteria for determining the rank. Finally, the forecasting performance of the reduced rank VAR model is evaluated in comparison with other popular forecasting models for large data sets.

Nyckelord
Model selection, Bayesian VAR model, Reduced rank regression, Markov chain Monte Carlo
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
Statistik
Identifikatorer
urn:nbn:se:oru:diva-35875 (URN)
Tillgänglig från: 2014-08-07 Skapad: 2014-08-07 Senast uppdaterad: 2017-10-17Bibliografiskt granskad
4. Bayesian VAR models with asymmetric lags
Öppna denna publikation i ny flik eller fönster >>Bayesian VAR models with asymmetric lags
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Most studies estimate the VAR models with equal lag length. Little attention has been paid to the issue of lag specifications. In this paper we propose VAR models with asymmetric lags via Bayesian sparse learning. Three popular sparse priors, L1-penalized Lasso, the mixture of L1 and L2 penalties elastic net, and spike and slab type are developed using hierarchical Bayes formulation. The model identification performance is assessed with Monte Carlo experiment and the forecasting performance is evaluated with US macroeconomic data.

Nyckelord
Bayesian shrinkage, vector autoregression, sparsity, Lasso, elastic net, spike and slab prior, asymmetric lags
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
Statistik
Identifikatorer
urn:nbn:se:oru:diva-35876 (URN)
Tillgänglig från: 2014-08-07 Skapad: 2014-08-07 Senast uppdaterad: 2017-10-17Bibliografiskt granskad

Open Access i DiVA

Cover(105 kB)430 nedladdningar
Filinformation
Filnamn COVER01.pdfFilstorlek 105 kBChecksumma SHA-512
c7d05365a4d4a95e94740d418a0102fd201f3411b5e702ed30edf2b12db401bbe04cfed09d84639749b03ed241b380c17866bc5e183437a11ee6a03822bc0c73
Typ coverMimetyp application/pdf
Spikblad(127 kB)93 nedladdningar
Filinformation
Filnamn SPIKBLAD01.pdfFilstorlek 127 kBChecksumma SHA-512
c020b65bc03256419b44fd8a157cab0926cf43bdf8e426d3fdb3de6813710f916beb07f162a2e2f879e930e4011ecca3d6883ee3bb1cf3560cd6fa2e4549f839
Typ spikbladMimetyp application/pdf

Person

Ding, Shutong

Sök vidare i DiVA

Av författaren/redaktören
Ding, Shutong
Av organisationen
Handelshögskolan vid Örebro Universitet
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 858 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf