oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identifying genes relevant to specific biological conditions in time course microarray experiments
Institute for Biostatistics and Informatics in Medicine and Ageing Research, Department of Medicine, University of Rostock, Rostock, Germany.
Institute for Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.ORCID-id: 0000-0002-7173-5579
Institute for Mathematics and Informatics, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany.
Institute for Biostatistics and Informatics in Medicine and Ageing Research, Department of Medicine, University of Rostock, Rostock, Germany.
Visa övriga samt affilieringar
2013 (Engelska)Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, nr 10, artikel-id e76561Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Microarrays have been useful in understanding various biological processes by allowing the simultaneous study of the expression of thousands of genes. However, the analysis of microarray data is a challenging task. One of the key problems in microarray analysis is the classification of unknown expression profiles. Specifically, the often large number of non-informative genes on the microarray adversely affects the performance and efficiency of classification algorithms. Furthermore, the skewed ratio of sample to variable poses a risk of overfitting. Thus, in this context, feature selection methods become crucial to select relevant genes and, hence, improve classification accuracy. In this study, we investigated feature selection methods based on gene expression profiles and protein interactions. We found that in our setup, the addition of protein interaction information did not contribute to any significant improvement of the classification results. Furthermore, we developed a novel feature selection method that relies exclusively on observed gene expression changes in microarray experiments, which we call "relative Signal-to-Noise ratio" (rSNR). More precisely, the rSNR ranks genes based on their specificity to an experimental condition, by comparing intrinsic variation, i.e. variation in gene expression within an experimental condition, with extrinsic variation, i.e. variation in gene expression across experimental conditions. Genes with low variation within an experimental condition of interest and high variation across experimental conditions are ranked higher, and help in improving classification accuracy. We compared different feature selection methods on two time-series microarray datasets and one static microarray dataset. We found that the rSNR performed generally better than the other methods.

Ort, förlag, år, upplaga, sidor
San Fransisco, USA: Public Library Science , 2013. Vol. 8, nr 10, artikel-id e76561
Nationell ämneskategori
Bioinformatik och systembiologi Bioinformatik (beräkningsbiologi)
Identifikatorer
URN: urn:nbn:se:oru:diva-40244DOI: 10.1371/journal.pone.0076561ISI: 000325819400064PubMedID: 24146889Scopus ID: 2-s2.0-84885404996OAI: oai:DiVA.org:oru-40244DiVA, id: diva2:777906
Tillgänglig från: 2015-01-09 Skapad: 2015-01-07 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Repsilber, Dirk

Sök vidare i DiVA

Av författaren/redaktören
Repsilber, Dirk
I samma tidskrift
PLoS ONE
Bioinformatik och systembiologiBioinformatik (beräkningsbiologi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 494 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf