oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An extension of PPLS-DA for classification and comparison to ordinary PLS-DA
Institute for Genetics and Biometry, Department of Bioinformatics and Biomathematics, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.
Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
Institute for Genetics and Biometry, Department of Bioinformatics and Biomathematics, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.ORCID-id: 0000-0002-7173-5579
Institute for Genetics and Biometry, Department of Bioinformatics and Biomathematics, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.
2013 (Engelska)Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, nr 2, artikel-id e55267Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Classification studies are widely applied, e.g. in biomedical research to classify objects/patients into predefined groups. The goal is to find a classification function/rule which assigns each object/patient to a unique group with the greatest possible accuracy (classification error). Especially in gene expression experiments often a lot of variables (genes) are measured for only few objects/patients. A suitable approach is the well-known method PLS-DA, which searches for a transformation to a lower dimensional space. Resulting new components are linear combinations of the original variables. An advancement of PLS-DA leads to PPLS-DA, introducing a so called 'power parameter', which is maximized towards the correlation between the components and the group-membership. We introduce an extension of PPLS-DA for optimizing this power parameter towards the final aim, namely towards a minimal classification error. We compare this new extension with the original PPLS-DA and also with the ordinary PLS-DA using simulated and experimental datasets. For the investigated data sets with weak linear dependency between features/variables, no improvement is shown for PPLS-DA and for the extensions compared to PLS-DA. A very weak linear dependency, a low proportion of differentially expressed genes for simulated data, does not lead to an improvement of PPLS-DA over PLS-DA, but our extension shows a lower prediction error. On the contrary, for the data set with strong between-feature collinearity and a low proportion of differentially expressed genes and a large total number of genes, the prediction error of PPLS-DA and the extensions is clearly lower than for PLS-DA. Moreover we compare these prediction results with results of support vector machines with linear kernel and linear discriminant analysis.

Ort, förlag, år, upplaga, sidor
San Fransisco, USA: Public Library Science , 2013. Vol. 8, nr 2, artikel-id e55267
Nationell ämneskategori
Bioinformatik och systembiologi
Identifikatorer
URN: urn:nbn:se:oru:diva-40612DOI: 10.1371/journal.pone.0055267ISI: 000315100000012PubMedID: 23408965Scopus ID: 2-s2.0-84873660712OAI: oai:DiVA.org:oru-40612DiVA, id: diva2:777914
Tillgänglig från: 2015-01-09 Skapad: 2015-01-09 Senast uppdaterad: 2018-01-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Repsilber, Dirk

Sök vidare i DiVA

Av författaren/redaktören
Repsilber, Dirk
I samma tidskrift
PLoS ONE
Bioinformatik och systembiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 190 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf