oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data-driven rule mining and representation of temporal patterns in physiological sensor data
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS)ORCID-id: 0000-0002-9607-9504
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS)ORCID-id: 0000-0002-3122-693X
2015 (Engelska)Ingår i: IEEE journal of biomedical and health informatics, ISSN 2168-2194, E-ISSN 2168-2208, Vol. 19, nr 5, s. 1557-1566Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Mining and representation of qualitative patterns is a growing field in sensor data analytics. This paper leverages from rule mining techniques to extract and represent temporal relation of prototypical patterns in clinical data streams. The approach is fully data-driven, where the temporal rules are mined from physiological time series such as heart rate, respiration rate, and blood pressure. To validate the rules, a novel similarity method is introduced, that compares the similarity between rule sets. An additional aspect of the proposed approach has been to utilize natural language generation techniques to represent the temporal relations between patterns. In this study, the sensor data in the MIMIC online database was used for evaluation, in which the mined temporal rules as they relate to various clinical conditions (respiratory failure, angina, sepsis, ...) were made explicit as a textual representation. Furthermore, it was shown that the extracted rule set for any particular clinical condition was distinct from other clinical conditions.

Ort, förlag, år, upplaga, sidor
2015. Vol. 19, nr 5, s. 1557-1566
Nyckelord [en]
Data-driven modeling, health informatics, linguistic representation, pattern abstraction, physiological sensor data, sensor data analysis, temporal rule mining
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-46037DOI: 10.1109/JBHI.2015.2438645ISI: 000360791200004PubMedID: 26340684Scopus ID: 2-s2.0-84940989008OAI: oai:DiVA.org:oru-46037DiVA, id: diva2:859407
Tillgänglig från: 2015-10-07 Skapad: 2015-10-07 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Banaee, HadiLoutfi, Amy

Sök vidare i DiVA

Av författaren/redaktören
Banaee, HadiLoutfi, Amy
Av organisationen
Institutionen för naturvetenskap och teknik
I samma tidskrift
IEEE journal of biomedical and health informatics
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 614 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf