oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Unsupervised gas discrimination in uncontrolled environments by exploiting density peaks
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-1662-0960
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0001-5061-5474
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0002-0804-8637
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-0217-9326
2016 (engelsk)Inngår i: 2016 IEEE SENSORS, Institute of Electrical and Electronics Engineers (IEEE), 2016Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Gas discrimination with Open Sampling Systems based on low-cost electro-chemical sensor arrays is of great interest in several applications, such as exploration of hazardous areas and environmental monitoring. Due to the lack of labeled training data or the high costs of obtaining them, as well as the presence of unknown interferents in the target environments, supervised learning is often not applicable and thus, unsupervised learning is an interesting alternative. In this work, we present a cluster analysis approach that can infer the number of different chemical compounds and label the measurements in a given uncontrolled environment without relying on previously acquired training data. Our approach is validated with data collected in indoor and outdoor environments by a mobile robot equipped with an array of metal oxide sensors. The results show that high classification accuracy can be achieved with a rather low sensitivity to the selection of the only functional parameter of our proposed algorithm. 

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2016.
Serie
Proceedings of IEEE Sensors, ISSN 1930-0395
Emneord [en]
gas discrimination, Open Sampling Systems, metal oxide sensors, unsupervised learning
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-54024DOI: 10.1109/ICSENS.2016.7808903ISI: 000399395700485Scopus ID: 2-s2.0-85010987762ISBN: 978-1-4799-8287-5 (tryckt)OAI: oai:DiVA.org:oru-54024DiVA, id: diva2:1057307
Konferanse
15th IEEE Sensors Conference (SENSORS 2016), Orlando, USA, October 30 - November 2, 2016
Prosjekter
Mobile Robots with Novel Environmental Sensors for Inspection of Disaster Sites with Low Visibility
Merknad

Funding Agency:

ICT by the European Commission  645101

Tilgjengelig fra: 2016-12-16 Laget: 2016-12-16 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Fan, HanHernandez Bennetts, VictorSchaffernicht, ErikLilienthal, Achim J.

Søk i DiVA

Av forfatter/redaktør
Fan, HanHernandez Bennetts, VictorSchaffernicht, ErikLilienthal, Achim J.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 453 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf