oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards occupational health improvement in foundries through dense dust and pollution monitoring using a complementary approach with mobile and stationary sensing nodes
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0001-5061-5474
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0002-0804-8637
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-0217-9326
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-1662-0960
Vise andre og tillknytning
2016 (engelsk)Inngår i: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 131-136, artikkel-id 7759045Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In industrial environments, such as metallurgic facilities, human operators are exposed to harsh conditions where ambient air is often polluted with quartz, dust, lead debris and toxic fumes. Constant exposure to respirable particles can cause irreversible health damages and thus it is of high interest for occupational health experts to monitor the air quality on a regular basis. However, current monitoring procedures are carried out sparsely, with data collected in single day campaigns limited to few measurement locations. In this paper we explore the use and present first experimental results of a novel heterogeneous approach that uses a mobile robot and a network of low cost sensing nodes. The proposed system aims to address the spatial and temporal limitations of current monitoring techniques. The mobile robot, along with standard localization and mapping algorithms, allows to produce short term, spatially dense representations of the environment where dust, gas, ambient temperature and airflow information can be modelled. The sensing nodes on the other hand, can collect temporally dense (and usually spatially sparse) information during long periods of time, allowing in this way to register for example, daily variations in the pollution levels. Using data collected with the proposed system in an steel foundry, we show that a heterogeneous approach provides dense spatio-temporal information that can be used to improve the working conditions in industrial facilities.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2016. s. 131-136, artikkel-id 7759045
Emneord [en]
Occupational Health; Mobile Robot Olfaction; Pollution Monitoring
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-55230DOI: 10.1109/IROS.2016.7759045ISI: 000391921700019Scopus ID: 2-s2.0-85006511897ISBN: 9781509037629 (tryckt)OAI: oai:DiVA.org:oru-55230DiVA, id: diva2:1070802
Konferanse
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016), Daejeong, Korea, October 9-14, 2016
Prosjekter
RAISE
Forskningsfinansiär
Knowledge Foundation, 20130196Tilgjengelig fra: 2017-02-02 Laget: 2017-02-02 Sist oppdatert: 2018-07-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Hernandez Bennetts, VictorSchaffernicht, ErikLilienthal, Achim J.Fan, HanKucner, Tomasz Piotr
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 376 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf