oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Exploration and Localization of a Gas Source with MOX Gas Sensorson a Mobile Robot: A Gaussian Regression Bout Amplitude Approach
Dipartitmento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-4026-7490
School of Computer Science, College Lane, University of Hertfordshire, Hatfield, United Kingdom.
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0001-5061-5474
Vise andre og tillknytning
2017 (engelsk)Inngår i: 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN 2017): Proceedings, IEEE, 2017, s. 164-166Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Mobile robot olfaction systems combine gas sensorswith mobility provided by robots. They relief humansof dull, dirty and dangerous tasks in applications such assearch & rescue or environmental monitoring. We address gassource localization and especially the problem of minimizingexploration time of the robot, which is a key issue due toenergy constraints. We propose an active search approach forrobots equipped with MOX gas sensors and an anemometer,given an occupancy map. Events of rapid change in the MOXsensor signal (“bouts”) are used to estimate the distance to agas source. The wind direction guides a Gaussian regression,which interpolates distance estimates. The contributions of thispaper are two-fold. First, we extend previous work on gassource distance estimation with MOX sensors and propose amodification to cope better with turbulent conditions. Second,we introduce a novel active search gas source localizationalgorithm and validate it in a real-world environment.

sted, utgiver, år, opplag, sider
IEEE, 2017. s. 164-166
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-60672DOI: 10.1109/ISOEN.2017.7968898Scopus ID: 2-s2.0-85027226540OAI: oai:DiVA.org:oru-60672DiVA, id: diva2:1139675
Konferanse
IEEE International Symposium on Olfaction and Electronic Nose (ISOEN 2017), Montreal, QC, Canada, May 28-31, 2017
Tilgjengelig fra: 2017-09-08 Laget: 2017-09-08 Sist oppdatert: 2018-08-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Schaffernicht, ErikHernandez Bennetts, VictorLilienthal, Achim J

Søk i DiVA

Av forfatter/redaktør
Schaffernicht, ErikHernandez Bennetts, VictorLilienthal, Achim J
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 295 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf