oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bayesian Inference for the Global Minimum Variance Portfolio
Örebro University, Örebro University School of Business.
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 10 credits / 15 HE creditsStudent thesis
Place, publisher, year, edition, pages
2018. , p. 15
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:oru:diva-68929OAI: oai:DiVA.org:oru-68929DiVA, id: diva2:1248216
Subject / course
Statistik
Supervisors
Examiners
Available from: 2018-09-14 Created: 2018-09-14 Last updated: 2018-09-14Bibliographically approved

Open Access in DiVA

fulltext(559 kB)229 downloads
File information
File name FULLTEXT01.pdfFile size 559 kBChecksum SHA-512
ef8afd3339188e85e7076aa44839696c5797e05f8ba88a9cf419c8138c58af0d4f4473c2e6d1e12d34bb72a03095aa3b59dcfbcb9a06284dfa2a27b60586a5b0
Type fulltextMimetype application/pdf

By organisation
Örebro University School of Business
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 229 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 321 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf