oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Software Cost Estimation: A State-Of-The-Art Statistical and Visualization Approach for Missing Data
Örebro universitet, Handelshögskolan vid Örebro Universitet. (CERIS)ORCID-id: 0000-0002-0311-1502
2019 (engelsk)Inngår i: International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), ISSN 1947-959X, Vol. 10, nr 3Artikkel i tidsskrift (Fagfellevurdert) In press
Abstract [en]

Software Cost Estimation (SCE) is a critical phase in software development projects. A common problem in building software cost models is that the available datasets contain projects with lots of missing categorical data. There are several techniques for handling missing data in the context of SCE. The purpose of this paper is to show a state-of-art statistical and visualization approach of evaluating and comparing the effect of missing data on the accuracy of cost estimation models. Five missing data techniques were used: Multinomial Logistic Regression, Listwise Deletion, Mean Imputation, Expectation Maximization and Regression Imputation and compared with respect to their effect on the prediction accuracy of a least squares regression cost model. The evaluation is based on various expressions of the prediction error. The comparisons are conducted using statistical tests, resampling techniques and visualization tools like the Regression Error Characteristic curves.

sted, utgiver, år, opplag, sider
IGI Global, 2019. Vol. 10, nr 3
Emneord [en]
Software cost estimation, Missing data, Imputation, Regression error characteristic (REC) curves, Regression Receiver Operating Curves (RROC)
HSV kategori
Forskningsprogram
Informatik; Informationsteknologi; Datavetenskap; Statistik
Identifikatorer
URN: urn:nbn:se:oru:diva-72615OAI: oai:DiVA.org:oru-72615DiVA, id: diva2:1290324
Tilgjengelig fra: 2019-02-20 Laget: 2019-02-20 Sist oppdatert: 2019-02-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Chatzipetrou, Panagiota
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 144 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf