To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Non-linear dual-energy method development and evaluation for industrial computed tomography
Örebro University, School of Science and Technology.ORCID iD: 0000-0002-9362-8328
2019 (English)In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 30, no 6, article id 065006Article in journal (Refereed) Published
Abstract [en]

Industrial computed tomography of multi-material objects can be problematic due to difficulties in optimising the x-ray spectra of the scan. A possible solution to the problem is to use two x-ray spectra when scanning objects. The results from such scans can be fused into a single data-set that contains enhanced information. This practice is known as dual-energy computed tomography (DECT). In this work, the aim was to investigate two DECT methods ability to improve measurements in multi-material phantoms. To determine the performance of the methods three different phantoms containing precision spheres as measurement objects were investigated. To improve measurements in this work was defined as improving the measurement consistency of diameter measurements. The phantoms were also scanned with a single setting for comparison. The fusion of the data-sets was done using two methods, a linear fusion, and a novel non-linear fusion. Both of the methods relies on pre-reconstruction fusion of data-sets. The results show that both of the DECT methods improved measurement results significantly compared to the reference method. Further, the results show that the novel non-linear DECT method produces more accurate measurement results compared to the linear method.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2019. Vol. 30, no 6, article id 065006
Keywords [en]
Industrial computed tomography, dual-energy, metrology, multi-material, measurement consistency
National Category
Engineering and Technology Mechanical Engineering
Research subject
Physics
Identifiers
URN: urn:nbn:se:oru:diva-74031DOI: 10.1088/1361-6501/ab10ccISI: 000466894300001Scopus ID: 2-s2.0-85067570411OAI: oai:DiVA.org:oru-74031DiVA, id: diva2:1313549
Available from: 2019-05-03 Created: 2019-05-03 Last updated: 2023-12-08Bibliographically approved
In thesis
1. More Than a Shadow: Computed Tomography Method Development and Applications Concerning Complex Material Systems
Open this publication in new window or tab >>More Than a Shadow: Computed Tomography Method Development and Applications Concerning Complex Material Systems
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The complexity of the components fabricated in today's industry is ever increasing. This is partly due to market pressure, but it is also a result from recent progress in fabrication technologies that open up new design possibilities. The increased use of additive manufacturing and multi-material systems, especially, has driven the complexity of parts to new heights. The new complex material systems bring benets in many areas such as; mechanical properties, weight reduction, and multifunctions. However, the increased complexity also makes inspection and dimensional control more dicult. In additive manufacturing, for example, internal features can be fabricated which cannot be seen or measured with conventional tools. There is thus a need for non-destructive inspection methods that can measure these geometries. Such a method is X-ray computed tomography. Computed tomography utilizes the X-rays ability to penetrate material to create 3D digital volumes of components. Measurements and material investigations can be performed in these volumes without any damage to the investigated component. However, industrial computed tomography is still not a fully mature method and there are many uncertainties associated with the investigation technique. In this work, a dual-energy computed tomography tool has been developed with the aim to increase the performance of computed tomography when investigating complex geometries and material combinations. This method has been applied to various phantoms and an industrial case. Also, in this work, complex lattice structures fabricated with additive manufacturing have been investigated and analysed using computed tomography. The results show that the new DECT method improves measurement results and can be utilized to inspect multi-material components. The results also show that computed tomography can be used successfully to gain knowledge about complex lattices.

Place, publisher, year, edition, pages
Örebro: Örebro University, 2019. p. 139
Series
Örebro Studies in Technology, ISSN 1650-8580 ; 84
National Category
Other Mechanical Engineering
Identifiers
urn:nbn:se:oru:diva-73739 (URN)978-91-7529-286-1 (ISBN)
Public defence
2019-06-12, Örebro universitet, Teknikhuset, Hörsal T, Fakultetsgatan 1, Örebro, 13:15 (English)
Opponent
Supervisors
Available from: 2019-04-15 Created: 2019-04-15 Last updated: 2020-01-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Jansson, Anton

Search in DiVA

By author/editor
Jansson, Anton
By organisation
School of Science and Technology
In the same journal
Measurement science and technology
Engineering and TechnologyMechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 139 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf