oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Geometry of Matrix Polynomial Spaces
Örebro universitet, Institutionen för naturvetenskap och teknik. Department of Computing Science, Umeå University, Umeå, Sweden.ORCID-id: 0000-0001-9110-6182
Department of Computing Science, Umeå University, Umeå, Sweden.
Department of Computing Science, Umeå University, Umeå, Sweden.
Department of Mathematical Engineering, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
2020 (engelsk)Inngår i: Foundations of Computational Mathematics, ISSN 1615-3375, E-ISSN 1615-3383, Vol. 20, nr 3, s. 423-450Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We study how small perturbations of general matrix polynomials may change their elementary divisors and minimal indices by constructing the closure hierarchy (stratification) graphs of matrix polynomials’ orbits and bundles. To solve this problem, we construct the stratification graphs for the first companion Fiedler linearization of matrix polynomials. Recall that the first companion Fiedler linearization as well as all the Fiedler linearizations is matrix pencils with particular block structures. Moreover, we show that the stratification graphs do not depend on the choice of Fiedler linearization which means that all the spaces of the matrix polynomial Fiedler linearizations have the same geometry (topology). This geometry coincides with the geometry of the space of matrix polynomials. The novel results are illustrated by examples using the software tool StratiGraph extended with associated new functionality.

sted, utgiver, år, opplag, sider
Springer-Verlag New York, 2020. Vol. 20, nr 3, s. 423-450
Emneord [en]
Matrix polynomials, Stratifications Matrix pencils, Fiedler linearization, Canonical structure information, Orbit, Bundle
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-74859DOI: 10.1007/s10208-019-09423-1ISI: 000531825900002Scopus ID: 2-s2.0-85068193369OAI: oai:DiVA.org:oru-74859DiVA, id: diva2:1332828
Prosjekter
VR E0485301eSSENCE
Forskningsfinansiär
Swedish Research Council, E0485301eSSENCE - An eScience CollaborationTilgjengelig fra: 2019-06-28 Laget: 2019-06-28 Sist oppdatert: 2020-05-25bibliografisk kontrollert

Open Access i DiVA

Geometry of Matrix Polynomial Spaces(3140 kB)145 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 3140 kBChecksum SHA-512
b91d8c154e10bf727b5843304d53a89da3ba8a2178587aed83c0bfec1c6126bda3e6f4adc43df2d79ba81184fe466e97a395bad5c2768ae02b591ddd72bddd7e
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Dmytryshyn, Andrii

Søk i DiVA

Av forfatter/redaktør
Dmytryshyn, Andrii
Av organisasjonen
I samme tidsskrift
Foundations of Computational Mathematics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 145 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 231 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf