oru.sePublications
1718192021222320 of 97
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structure preserving stratification of skew-symmetric matrix polynomials
Department of Computing Science, Umeå University, Umeå, Sweden.ORCID iD: 0000-0001-9110-6182
2015 (English)Report (Other academic)
Abstract [en]

We study how elementary divisors and minimal indices of a skew-symmetric matrix polynomial of odd degree may change under small perturbations of the matrix coefficients. We investigate these changes qualitatively by constructing the stratifications (closure hierarchy graphs) of orbits and bundles for skew-symmetric linearizations. We also derive the necessary and sufficient conditions for the existence of a skew-symmetric matrix polynomial with prescribed degree, elementary divisors, and minimal indices.

Place, publisher, year, edition, pages
Umeå: Umeå universitet , 2015. , p. 26
National Category
Natural Sciences Mathematics Computer and Information Sciences
Identifiers
URN: urn:nbn:se:oru:diva-74877OAI: oai:DiVA.org:oru-74877DiVA, id: diva2:1332911
Funder
Swedish Research Council, E0485301eSSENCE - An eScience CollaborationAvailable from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-08-06Bibliographically approved

Open Access in DiVA

Structure preserving stratification of skew-symmetric matrix polynomials(1707 kB)9 downloads
File information
File name FULLTEXT01.pdfFile size 1707 kBChecksum SHA-512
a7f5a47221627a6307983edc20afff493faca173bdafdefafbe954ae43da90ed47ab6173b0ff1f0d9796cda7b7ba8f01aead902fa22e6551cc60ab60d2f7842b
Type fulltextMimetype application/pdf

Authority records BETA

Dmytryshyn, Andrii

Search in DiVA

By author/editor
Dmytryshyn, Andrii
Natural SciencesMathematicsComputer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 9 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 23 hits
1718192021222320 of 97
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf