oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
FireNose on Mobile Robot in Harsh Environments
School of Engineering, University of Warwick, Coventry, UK.
School of Engineering, University of Warwick, Coventry, UK.
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-1662-0960
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-4026-7490
Vise andre og tillknytning
2019 (engelsk)Inngår i: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 19, nr 24, s. 12418-12431Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this work we present a novel multi-sensor unit, a.k.a. FireNose, to detect and discriminate both known and unknown gases in uncontrolled conditions to aid firefighters under harsh conditions. The unit includes three metal oxide (MOX) gas sensors with CMOS micro heaters, a plasmonic enhanced non-dispersive infrared (NDIR) sensor optimized for the detection of CO2, a commercial temperature humidity sensor, and a flow sensor. We developed custom film coatings for the MOX sensors (SnO2, WO3 and NiO) which greatly improved the gas sensitivity, response time and lifetime of the miniature devices. Our proposed system exhibits promising performance for gas sensing in harsh environments, in terms of power consumption (∼ 35 mW at 350°C per MOX sensor), response time (<10 s), robustness and physical size. The sensing unit was evaluated with plumes of gases in both, a laboratory setup on a gas testing rig and on-board a mobile robot operating indoors. These high sensitivity, high-bandwidth sensors, together with online unsupervised gas discrimination algorithms, are able to detect and generate their spatial distribution maps accordingly. In the robotic experiments, the resulting gas distribution maps corresponded well to the actual location of the sources. Therefore, we verified its ability to differentiate gases and generate gas maps in real-world experiments.

sted, utgiver, år, opplag, sider
IEEE, 2019. Vol. 19, nr 24, s. 12418-12431
Emneord [en]
FireNose, mobile robot, MOX sensor, gas map, harsh environments
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-77784DOI: 10.1109/JSEN.2019.2939039ISI: 000506895500081PubMedID: 2-s2.0-85076340302Scopus ID: 2-s2.0-85076340302OAI: oai:DiVA.org:oru-77784DiVA, id: diva2:1368091
Forskningsfinansiär
EU, Horizon 2020Tilgjengelig fra: 2019-11-06 Laget: 2019-11-06 Sist oppdatert: 2020-02-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Fan, HanSchaffernicht, ErikHernandez Bennetts, VictorLilienthal, Achim J.

Søk i DiVA

Av forfatter/redaktør
Fan, HanSchaffernicht, ErikHernandez Bennetts, VictorLilienthal, Achim J.
Av organisasjonen
I samme tidsskrift
IEEE Sensors Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 95 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf