Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improved mapping and image segmentation by using semantic information to link aerial images and ground-level information
Örebro universitet, Institutionen för teknik. (AASS)
Department of Computing and Informatics, University of Lincoln, Lincoln, United Kingdom. (Department of Computing and Informatics)
Örebro universitet, Institutionen för teknik. (AASS)ORCID-id: 0000-0003-0217-9326
2007 (Engelska)Ingår i: Proceedings of the IEEE international conference on advanced robotics: ICAR 2007, 2007, s. 924-929Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper investigates the use of semantic information to link ground-level occupancy maps and aerial images. In the suggested approach a ground-level semantic map is obtained by a mobile robot equipped with an omnidirectional camera, differential GPS and a laser range finder. The mobile robot uses a virtual sensor for building detection (based on omnidirectional images) to compute the ground-level semantic map, which indicates the probability of the cells being occupied by the wall of a building. These wall estimates from a ground perspective are then matched with edges detected in an aerial image. The result is used to direct a region- and boundary-based segmentation algorithm for building detection in the aerial image. This approach addresses two difficulties simultaneously: 1) the range limitation of mobile robot sensors and 2) the difficulty of detecting buildings in monocular aerial images. With the suggested method building outlines can be detected faster than the mobile robot can explore the area by itself, giving the robot an ability to "see" around corners. At the same time, the approach can compensate for the absence of elevation data in segmentation of aerial images. Our experiments demonstrate that ground-level semantic information (wall estimates) allows to focus the segmentation of the aerial image to find buildings and produce a groundlevel semantic map that covers a larger area than can be built using the onboard sensors along the robot trajectory.

Ort, förlag, år, upplaga, sidor
2007. s. 924-929
Nationell ämneskategori
Teknik och teknologier Data- och informationsvetenskap
Forskningsämne
Datalogi
Identifikatorer
URN: urn:nbn:se:oru:diva-4267OAI: oai:DiVA.org:oru-4267DiVA, id: diva2:138566
Konferens
13th IEEE International Conference on Advanced Robotics, ICAR 2007, Jeju Isl, South Korea, Aug. 22-25, 2007
Tillgänglig från: 2007-12-13 Skapad: 2007-12-13 Senast uppdaterad: 2022-08-05Bibliografiskt granskad

Open Access i DiVA

Improved Mapping and Image Segmentation by Using Semantic Information to Link Aerial Images and Ground-Level Information(377 kB)440 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 377 kBChecksumma SHA-512
e9ffe386742f13ee6349c135f3370871e66556df6fe9ae414abaa1c446363c2e3fc31543550d38a942b438ab3dd3ba6ddd5b3306be463c83f1602beb8c92dbf5
Typ fulltextMimetyp application/pdf

Person

Persson, MartinLilienthal, Achim J.

Sök vidare i DiVA

Av författaren/redaktören
Persson, MartinLilienthal, Achim J.
Av organisationen
Institutionen för teknik
Teknik och teknologierData- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 440 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 717 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf