oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Submap per Perspective: Selecting Subsets for SuPer Mapping that Afford Superior Localization Quality
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: adolfsson
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-3788-499X
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0001-8658-2985
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-0217-9326
Vise andre og tillknytning
2019 (engelsk)Inngår i: 2019 European Conference on Mobile Robots (ECMR), IEEE, 2019Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper targets high-precision robot localization. We address a general problem for voxel-based map representations that the expressiveness of the map is fundamentally limited by the resolution since integration of measurements taken from different perspectives introduces imprecisions, and thus reduces localization accuracy.We propose SuPer maps that contain one Submap per Perspective representing a particular view of the environment. For localization, a robot then selects the submap that best explains the environment from its perspective. We propose SuPer mapping as an offline refinement step between initial SLAM and deploying autonomous robots for navigation. We evaluate the proposed method on simulated and real-world data that represent an important use case of an industrial scenario with high accuracy requirements in an repetitive environment. Our results demonstrate a significantly improved localization accuracy, up to 46% better compared to localization in global maps, and up to 25% better compared to alternative submapping approaches.

sted, utgiver, år, opplag, sider
IEEE, 2019.
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-79739DOI: 10.1109/ECMR.2019.8870941Scopus ID: 2-s2.0-85074443858ISBN: 978-1-7281-3605-9 (digital)OAI: oai:DiVA.org:oru-79739DiVA, id: diva2:1391182
Konferanse
European Conference on Mobile Robotics (ECMR), Prague, Czech Republic, September 4 - 6, 2019
Forskningsfinansiär
EU, Horizon 2020, 732737Tilgjengelig fra: 2020-02-03 Laget: 2020-02-03 Sist oppdatert: 2020-02-14bibliografisk kontrollert

Open Access i DiVA

A Submap per Perspective - Selecting Subsets for SuPer Mapping that Afford Superior Localization Quality(4793 kB)46 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4793 kBChecksum SHA-512
6966ae59319ae2fda3dc3f0e45790316c3877d2449be7c7e03d07f35d3194fdd70324d53fcc405f532d49434bf14ed563858ab63f75912225754785f44ef5250
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Adolfsson, DanielLowry, StephanieMagnusson, MartinLilienthal, Achim J.Andreasson, Henrik

Søk i DiVA

Av forfatter/redaktør
Adolfsson, DanielLowry, StephanieMagnusson, MartinLilienthal, Achim J.Andreasson, Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 46 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 46 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf