oru.sePublikasjoner
4546474849505148 of 224
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gas Source Declaration with Tetrahedral Sensing Geometries and Median Value Filtering Extreme Learning Machine
Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-0217-9326
Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
2019 (engelsk)Inngår i: IEEE Access, E-ISSN 2169-3536, Vol. 8, s. 7227-7235, artikkel-id 8945323Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Gas source localization (including gas source declaration) is critical for environmental monitoring, pollution control and chemical safety. In this paper we approach the gas source declaration problem by constructing a tetrahedron, each vertex of which consists of a gas sensor and a three-dimensional (3D) anemometer. With this setup, the space sampled around a gas source can be divided into two categories, i.e. inside (“source in”) and outside (“source out”) the tetrahedron, posing gas source declaration as a classification problem. For the declaration of the “source in” or “source out” cases, we propose to directly take raw gas concentration and wind measurement data as features, and apply a median value filtering based extreme learning machine (M-ELM) method. Our experimental results show the efficacy of the proposed method, yielding accuracies of 93.2% and 100% for gas source declaration in the regular and irregular tetrahedron experiments, respectively. These results are better than that of the ELM-MFC (mass flux criterion) and other variants of ELM algorithms.

sted, utgiver, år, opplag, sider
IEEE, 2019. Vol. 8, s. 7227-7235, artikkel-id 8945323
Emneord [en]
Gas source declaration, tetrahedron, gas concentration measurement, wind information, extreme learning machine, median value filtering
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-79745DOI: 10.1109/ACCESS.2019.2963059Scopus ID: 2-s2.0-85078246836OAI: oai:DiVA.org:oru-79745DiVA, id: diva2:1391197
Tilgjengelig fra: 2020-02-03 Laget: 2020-02-03 Sist oppdatert: 2020-02-14bibliografisk kontrollert

Open Access i DiVA

Gas Source Declaration with Tetrahedral Sensing Geometries and Median Value Filtering Extreme Learning Machine(592 kB)41 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 592 kBChecksum SHA-512
a68cd2f9d417f7fcc557c5613e40fcc6b1036c7dc301db5e876f02a939b5af27c3535972ffdf8d6c4cd99ba4164735e0e44d53fa8bcdb204d70c038b8aea89c3
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Lilienthal, Achim J.

Søk i DiVA

Av forfatter/redaktør
Lilienthal, Achim J.
Av organisasjonen
I samme tidsskrift
IEEE Access

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 41 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 47 treff
4546474849505148 of 224
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf