oru.sePublikationer
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gas Source Declaration with Tetrahedral Sensing Geometries and Median Value Filtering Extreme Learning Machine
Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-0217-9326
Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
2020 (Engelska)Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 8, s. 7227-7235, artikel-id 8945323Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Gas source localization (including gas source declaration) is critical for environmental monitoring, pollution control and chemical safety. In this paper we approach the gas source declaration problem by constructing a tetrahedron, each vertex of which consists of a gas sensor and a three-dimensional (3D) anemometer. With this setup, the space sampled around a gas source can be divided into two categories, i.e. inside (“source in”) and outside (“source out”) the tetrahedron, posing gas source declaration as a classification problem. For the declaration of the “source in” or “source out” cases, we propose to directly take raw gas concentration and wind measurement data as features, and apply a median value filtering based extreme learning machine (M-ELM) method. Our experimental results show the efficacy of the proposed method, yielding accuracies of 93.2% and 100% for gas source declaration in the regular and irregular tetrahedron experiments, respectively. These results are better than that of the ELM-MFC (mass flux criterion) and other variants of ELM algorithms.

Ort, förlag, år, upplaga, sidor
IEEE, 2020. Vol. 8, s. 7227-7235, artikel-id 8945323
Nyckelord [en]
Gas source declaration, tetrahedron, gas concentration measurement, wind information, extreme learning machine, median value filtering
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-79745DOI: 10.1109/ACCESS.2019.2963059ISI: 000525422700039Scopus ID: 2-s2.0-85078246836OAI: oai:DiVA.org:oru-79745DiVA, id: diva2:1391197
Anmärkning

Funding Agencies:

National Natural Science Foundation of China

61573253 National Key Research and Development Program of China  2017YFC0306200

Tillgänglig från: 2020-02-03 Skapad: 2020-02-03 Senast uppdaterad: 2020-04-30Bibliografiskt granskad

Open Access i DiVA

Gas Source Declaration with Tetrahedral Sensing Geometries and Median Value Filtering Extreme Learning Machine(592 kB)63 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 592 kBChecksumma SHA-512
a68cd2f9d417f7fcc557c5613e40fcc6b1036c7dc301db5e876f02a939b5af27c3535972ffdf8d6c4cd99ba4164735e0e44d53fa8bcdb204d70c038b8aea89c3
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Lilienthal, Achim J.

Sök vidare i DiVA

Av författaren/redaktören
Lilienthal, Achim J.
Av organisationen
Institutionen för naturvetenskap och teknik
I samma tidskrift
IEEE Access
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 63 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 62 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf