oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Study of the effects of protein synthesis inhibition on proteasome-mediated protein degradation in Caenorhabditis elegans
Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; Örebro University, Medical School, Örebro, Sweden.
(English)Manuscript (preprint) (Other academic)
National Category
Other Basic Medicine
Identifiers
URN: urn:nbn:se:oru:diva-80902OAI: oai:DiVA.org:oru-80902DiVA, id: diva2:1417639
Available from: 2020-03-30 Created: 2020-03-30 Last updated: 2020-03-30Bibliographically approved
In thesis
1. Functional analysis of the proteasome in eukaryotic organisms
Open this publication in new window or tab >>Functional analysis of the proteasome in eukaryotic organisms
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Proteasome degradation machinery is responsible for the turnover of a huge variety of normal and abnormal proteins, thus regulating a plethora of cellular processes. Aging is an inevitable biological process that is characterized by reduced proteasome function that leads to proteotoxic stress. Compound-related interventions, that ameliorate proteasome system collapse, retard aging process. In the present thesis, 18α-glycyrrhetinic acid (18α-GA), a natural compound with known proteasome activating properties in cells, was indicated to activate proteasome also in the multicellular organism Caenorhabditis elegans (C. elegans). Evaluation of the antiaging and protein anti-aggregation effects of this bioactive compound indicated that 18α-GA promoted longevity in nematodes through proteasome-and SKN-1-mediated activation and decelerated Alzheimer’sdisease progression and neuropathology both in nematodes and neuronal cells. Additionally, the crosstalk between protein synthesis and proteasome-mediated protein degradation was analyzed in eukaryotic organisms under various cellular conditions. Protein synthesis inhibition was observed to increase proteasome function and assembly in human primary embryonic fibroblasts, with heat shock protein chaperone machinery to contribute to the elevated proteasome assembly. Alternatively, protein synthesis inhibition increased the protein levels of specific proteasome subunits without influencing the proteasome activity in C. elegans. Furthermore, proteasome activation by means which have also pro-longevity effects decreased the protein synthesis rate both in human fibroblast cellsand nematodes. This thesis suggests: 1) that a diet-derived compound could act as a pro-longevity and anti-aggregation agent in the context of amulticellular organism and 2) the existence of a complex interplay between anabolic and catabolic processes under different cellular conditions, across species.

Place, publisher, year, edition, pages
Örebro: Örebro University, 2020. p. 116
Series
Örebro Studies in Medicine, ISSN 1652-4063 ; 208
Keywords
Proteasome, Proteasome activation, Protein synthesis inhibition, Hsp70, Hsp90, Proteostasis, Aging, Alzheimer’s disease, Caenorhabditis elegans, Lifespan extension, SKN-1
National Category
Other Basic Medicine
Identifiers
urn:nbn:se:oru:diva-79875 (URN)978-91-7529-330-1 (ISBN)
Public defence
2020-04-23, Örebro universitet, Campus USÖ, hörsal C3, Södra Grev Rosengatan 32, Örebro, 13:00 (English)
Opponent
Supervisors
Available from: 2020-02-14 Created: 2020-02-14 Last updated: 2020-04-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other Basic Medicine

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 141 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf