Cocktail effects of tire wear particles leachates on diverse biological models: A multilevel analysisShow others and affiliations
2024 (English)In: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 471, article id 134401Article in journal (Refereed) Published
Abstract [en]
Tire wear particles (TWP) stand out as a major contributor to microplastic pollution, yet their environmental impact remains inadequately understood. This study delves into the cocktail effects of TWP leachates, employing molecular, cellular, and organismal assessments on diverse biological models. Extracted in artificial seawater and analyzed for metals and organic compounds, TWP leachates revealed the presence of polyaromatic hydrocarbons and 4-tert-octylphenol. Exposure to TWP leachates (1.5 to 1000 mg peq L-1) inhibited algae growth and induced zebrafish embryotoxicity, pigment alterations, and behavioral changes. Cell painting uncovered pro-apoptotic changes, while mechanism-specific gene-reporter assays highlighted endocrine-disrupting potential, particularly antiandrogenic effects. Although heavy metals like zinc have been suggested as major players in TWP leachate toxicity, this study emphasizes water-leachable organic compounds as the primary causative agents of observed acute toxicity. The findings underscore the need to reduce TWP pollution in aquatic systems and enhance regulations governing highly toxic tire additives.
Place, publisher, year, edition, pages
Elsevier, 2024. Vol. 471, article id 134401
Keywords [en]
Cell painting, Endocrine disruption, In Vivo toxicity testing, Leachate cocktail toxicity, Tire wear particles
National Category
Environmental Sciences Pharmacology and Toxicology
Identifiers
URN: urn:nbn:se:oru:diva-113412DOI: 10.1016/j.jhazmat.2024.134401ISI: 001236741400001PubMedID: 38678714Scopus ID: 2-s2.0-85191351412OAI: oai:DiVA.org:oru-113412DiVA, id: diva2:1854862
Note
This study was funded by the Spanish Ministry of Science and Innovation and the National Agency of Research through the MICROPLEACH project (Agencia Estatal de Investigación, PID2020–120479 GA-I00/AEI/10.13039/501100011033) to RA. It was also supported by a “Juan de la Cierva” grant from the Spanish Ministry of Science and Innovation to JLD and a ”Ramón y Cajal” grant from the Spanish Ministry of Science (RYC2018–025770-I) to RA.
2024-04-292024-04-292024-06-13Bibliographically approved