We present a system which includes an under-actuated anthropomorphic hand and control algorithms for autonomous grasping of everyday objects. The system comprised a control framework for hybrid force/position control in simulation and reality, a grasp simulator, and an under-actuated robot hand equipped with tactile sensors.We start by presenting the robot hand, the simulation environment and the control framework that enable dynamic simulation of an under-actuated robot hand. We continue by presenting simulation results and also discuss and exemplify the use of simulation in relation to autonomous grasping. Finally, we use the very same controller in real world grasping experiments to validate the simulations and to exemplify system capabilities and limitations.