oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Computationally feasible estimation of the covariance structure in generalized linear mixed models 
Örebro universitet, Handelshögskolan vid Örebro universitet.
Dalarna University, SE 781 88 Borlange, Sweden.
2008 (engelsk)Inngår i: Journal of Statistical Computation and Simulation, ISSN 0094-9655, E-ISSN 1563-5163, Vol. 78, nr 12, s. 1229-1239Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, we discuss how a regression model, with a non-continuous response variable, which allows for dependency between observations, should be estimated when observations are clustered and measurements on the subjects are repeated. The cluster sizes are assumed to be large.We find that the conventional estimation technique suggested by the literature on generalized linear mixed models(GLMM) is slow and sometimes fails due to non-convergence and lack of memory on standard PCs.We suggest to estimate the random effects as fixed effects by generalized linear model and to derive the covariance matrix from these estimates.A simulation study shows that our proposal is feasible in terms of mean-square error and computation time.We recommend that our proposal be implemented in the software of GLMM techniques so that the estimation procedure can switch between the conventional technique and our proposal, depending on the size of the clusters.

sted, utgiver, år, opplag, sider
London: Taylor & Francis , 2008. Vol. 78, nr 12, s. 1229-1239
Emneord [en]
Monte Carlo simulations, Large sample, Interdependence, Cluster errors
HSV kategori
Forskningsprogram
Statistik
Identifikatorer
URN: urn:nbn:se:oru:diva-14060DOI: 10.1080/00949650701688547OAI: oai:DiVA.org:oru-14060DiVA, id: diva2:389258
Merknad
Mr Alam is also affiliated to Dalarna University, SE 781 88 Borlange, SwedenTilgjengelig fra: 2011-01-19 Laget: 2011-01-19 Sist oppdatert: 2017-12-11bibliografisk kontrollert
Inngår i avhandling
1. Feasible computation of generalized linear mixed models with application to credit risk modelling
Åpne denne publikasjonen i ny fane eller vindu >>Feasible computation of generalized linear mixed models with application to credit risk modelling
2010 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis deals with developing and testing feasible computational procedures to facilitate the estimation of and carry out the prediction with the generalized linear mixed model (GLMM) with a scope of applying them to large data sets. The work of this thesis is motivated from an issue arising incredit risk modelling. We have access to a huge data set, consisting of about one million observations, on credit history obtained from two major Swedish banks. The principal research interest involved with the data analysis is to model the probability of credit defaults by incorporating the systematic dependencies among the default events. In order to model the dependent credit defaults we adopt the framework of GLMM which is apopular approach to model correlated binary data. However, existing computational procedures for GLMM did not offer us the flexibility to incorporate the desired correlation structure of defaults events.For the feasible estimation of the GLMM we propose two estimation techniques being the fixed effects (FE) approach and the two-step pseudolikelihood approach (2PL). The preciseness of the estimation techniques and their computational advantages are studied by Monte-Carlo simulations and by applying them to the credit risk modelling. Regarding the prediction issue, we show how to apply the likelihood principle to carryout prediction with GLMM. We also provide an R add-in package to facilitate the predictive inference for GLMM.

sted, utgiver, år, opplag, sider
Örebro: Örebro universitet, 2010. s. 29
Serie
Örebro Studies in Statistics, ISSN 1651-8608 ; 5
Emneord
Credit risk, cluster correlation, GLMM, large data, two-step pseudo likelihood estimation, defaults contagion, predictive likelihood
HSV kategori
Forskningsprogram
Statistik
Identifikatorer
urn:nbn:se:oru:diva-12390 (URN)978-91-7668-771-0 (ISBN)
Disputas
2010-12-21, Hörsal M, Örebro universitet, Fakultetsgatan 1, 701 82 Örebro, 15:15 (engelsk)
Opponent
Tilgjengelig fra: 2010-11-04 Laget: 2010-11-02 Sist oppdatert: 2017-10-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://dx.doi.org/10.1080/00949650701688547

Personposter BETA

Alam, Md. Moudud

Søk i DiVA

Av forfatter/redaktør
Alam, Md. Moudud
Av organisasjonen
I samme tidsskrift
Journal of Statistical Computation and Simulation

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 151 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf