oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mobile Robot Navigation using potential fields andmarket based optimization
Örebro universitet, Institutionen för naturvetenskap och teknik.
2013 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

A team of mobile robots moving in a shared area raises the problem of safe and autonomous navigation. While avoiding static and dynamic obstacles, mobile robots in a team can lead to complicated and irregular movements. Local reactive approaches are used to deal with situations where robots are moving in dynamic environment; these approaches help in safe navigation of robots but do not give optimal solution. In this work a 2-D navigation strategy is implemented, where a potential field method is used for obstacle avoidance. This potential field method is improved using fuzzy rules, traffic rules and market based optimization (MBO). Fuzzy rules are used to deform repulsive potential fields in the vicinity of obstacles. Traffic rules are used to deal situations where two robots are crossing each other. Market based optimization (MBO) is used to strengthen or weaken repulsive potential fields generated by other robots based on their importance. For the verification of this strategy on more realistic vehicles this navigation strategy is implemented and tested in simulation. Issues while implementing this method and limitations of this navigation strategy are also discussed. Extensive experiments are performed to examine the validity of MBO navigation strategy over traditional potential field (PF) method.

sted, utgiver, år, opplag, sider
2013. , s. 93
Serie
Studies from the School of Science and Technology
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-29549OAI: oai:DiVA.org:oru-29549DiVA, id: diva2:628458
Fag / kurs
Computer Engineering
Uppsök
Technology
Veileder
Examiner
Tilgjengelig fra: 2013-06-14 Laget: 2013-06-14 Sist oppdatert: 2017-10-17

Open Access i DiVA

fulltext(2300 kB)3730 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2300 kBChecksum SHA-512
2d4bef142c197c78b3e808c0eb7317473c48c7962391db9d8e0042fb5768caabe3bf1d37d87c16fda5a90c51222c88a626f3bdd68bee3c334d7763a7657efa3c
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 3730 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1433 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf