To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detecting large inclusions in steels: evaluating methods
Department of Mechanical and Materials Engineering, Karlstad University, Karlstad, Sweden. (Maskinteknik)ORCID iD: 0000-0003-1655-0392
Department of Mechanical and Materials Engineering, Karlstad University, Karlstad, Sweden.ORCID iD: 0000-0001-6029-2613
2009 (English)In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 80, no 11, p. 854-858Article in journal (Refereed) Published
Abstract [en]

The distributions of large non-metallic inclusions in two steel grades have been investigated using light optical microscopy, scanning electron microscopy and ultrasonic fatigue testing in the gigacycle range. The different methods have inherently different capabilities for finding inclusions in different size ranges. A measure of the distribution of large inclusions is proposed as the size S at which half of the fatigue specimens are expected to contain at least one inclusion of size S or larger, corresponding to 50% failure probability. Values of S are obtained using the volume distribution estimated by the three methods. Extrapolation from microscopy measurements on surfaces agree with fatigue fractography results regarding density of large inclusions, as measured by the proposed ranking variable S.

Place, publisher, year, edition, pages
Weinheim, Germany: Wiley-VCH Verlagsgesellschaft, 2009. Vol. 80, no 11, p. 854-858
Keywords [en]
Inclusion distribution, steel, very high cycle fatigue
National Category
Materials Engineering
Research subject
Materials Engineering
Identifiers
URN: urn:nbn:se:oru:diva-39902DOI: 10.2374/SRI08SP156ISI: 000272027100010Scopus ID: 2-s2.0-73149120049OAI: oai:DiVA.org:oru-39902DiVA, id: diva2:773460
Note

Vid tidpunkten för författarens licentiatseminarium, förelåg detta delarbete som manuskript. This paper was first published as a manuscript at time for the author's licentiate seminar.

Available from: 2009-02-05 Created: 2014-12-19 Last updated: 2019-10-11Bibliographically approved
In thesis
1. Large and rare: An extreme values approach to estimating the distribution of large defects in high-performance steels
Open this publication in new window or tab >>Large and rare: An extreme values approach to estimating the distribution of large defects in high-performance steels
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The presence of different types of defects is an important reality for manufacturers and users of engineering materials. Generally, the defects are either considered to be the unwanted products of impurities in the raw materials or to have been introduced during the manufacturing process. In high-quality steel materials, such as tool steel, the defects are usually non-metallic inclusions such as oxides or sulfides.

Traditional methods for purity control during standard manufacturing practice are usually based on the light optical microscopy scanning of polished surfaces and some statistical evaluation of the results. Yet, as the steel manufacturing process has improved, large defects have become increasingly rare. A major disadvantage of the traditional quality control methods is that the accuracy decreases proportionally to the increased rarity of the largest defects unless large areas are examined.

However, the use of very high cycle fatigue to 109 cycles has been shown to be a powerful method to locate the largest defects in steel samples. The distribution of the located defects may then be modelled using extreme value statistics.

This work presents new methods for determining the volume distribution of large defects in high-quality steels, based on ultrasonic fatigue and the Generalized Extreme Value (GEV) distribution. The methods have been developed and verified by extensive experimental testing, including over 400 fatigue test specimens. Further, a method for reducing the distributions into one single ranking variable has been proposed, as well as a way to estimate an ideal endurance strength at different life lengths using the observed defects and endurance limits. The methods can not only be used to discriminate between different materials made by different process routes, but also to differentiate between different batches of the same material.

It is also shown that all modes of the GEV are to be found in different steel materials, thereby challenging a common assumption that the Gumbel distribution, a special case of the GEV, is the appropriate distribution choice when determining the distribution of defects.

The new methods have been compared to traditional quality control methods used in common practice (surface scanning using LOM/SEM and ultrasound C-scan), and suggest a greater number of large defects present in the steel than could otherwise be detected.

Place, publisher, year, edition, pages
Karlstad: Karlstad University, 2011. p. 31
Series
Karlstad University Studies, ISSN 1403-8099 ; 2011:47
Keywords
Non-metallic inclusions, Tool steel, Extreme value statistics, Distribution of defects, Generalized extreme values
National Category
Metallurgy and Metallic Materials
Research subject
Materials Engineering
Identifiers
urn:nbn:se:oru:diva-39894 (URN)978-91-7063-382-9 (ISBN)
Public defence
2011-10-27, Eva Eriksson, 21A 342, Karlstads universitet, 13:15 (Swedish)
Opponent
Supervisors
Available from: 2015-03-09 Created: 2014-12-19 Last updated: 2018-05-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ekengren, JensBergström, Jens

Search in DiVA

By author/editor
Ekengren, JensBergström, Jens
In the same journal
Steel Research International
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 668 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf