oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fuzzy logic and adaptive neuro-fuzzy inference system for characterization of contaminant exposure through selected biomarkers in African catfish
Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia, Selangor, Malaysia.
Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany. (MTM)ORCID-id: 0000-0002-2356-6686
Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany.
Fisheries and Oceans Canada at the Canadian Rivers Institute, Department of Biology, University of New Brunswick, Fredericton NB, Canada.
2013 (engelsk)Inngår i: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 20, nr 3, s. 1586-1595Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This study represents a first attempt at applying a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) to the field of aquatic biomonitoring for classification of the dosage and time of benzo[a]pyrene (BaP) injection through selected biomarkers in African catfish (Clarias gariepinus). Fish were injected either intramuscularly (i.m.) or intraperitoneally (i.p.) with BaP. Hepatic glutathione S-transferase (GST) activities, relative visceral fat weights (LSI), and four biliary fluorescent aromatic compounds (FACs) concentrations were used as the inputs in the modeling study. Contradictory rules in FIS and ANFIS models appeared after conversion of bioassay results into human language (rule-based system). A “data trimming”approach was proposed to eliminate the conflicts prior to fuzzification. However, the model produced was relevant only to relatively low exposures to BaP, especially through the i.m. route of exposure. Furthermore, sensitivity analysis was unable to raise the classification rate to an acceptable level. In conclusion, FIS and ANFIS models have limited applications in the field of fish biomarker studies.

sted, utgiver, år, opplag, sider
Heidelberg, Germany: Springer, 2013. Vol. 20, nr 3, s. 1586-1595
Emneord [en]
Modeling . Fish biomarkers . Fuzzy inference system (FIS) . Adaptive neuro-fuzzy inference system (ANFIS) . Benzo[a]pyrene (BaP) . African catfish (Clarias gariepinus)
HSV kategori
Forskningsprogram
Miljövetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-40134DOI: 10.1007/s11356-012-1027-5ISI: 000315442500036PubMedID: 22752811Scopus ID: 2-s2.0-84874287480OAI: oai:DiVA.org:oru-40134DiVA, id: diva2:776034
Tilgjengelig fra: 2015-01-06 Laget: 2015-01-06 Sist oppdatert: 2018-05-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Keiter, Steffen

Søk i DiVA

Av forfatter/redaktør
Keiter, Steffen
I samme tidsskrift
Environmental science and pollution research international

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 451 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf