oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integration of a systems biological network analysis and QTL results for biomass heterosis in Arabidopsis thaliana
Department Genetics and Biometry, Bioinformatics and Biomathematics Group, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany; Department of Medicine, Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostock, Germany.
Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
Bioinformatics Chair, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
Vise andre og tillknytning
2012 (engelsk)Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, nr 11, artikkel-id e49951Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

To contribute to a further insight into heterosis we applied an integrative analysis to a systems biological network approach and a quantitative genetics analysis towards biomass heterosis in early Arabidopsis thaliana development. The study was performed on the parental accessions C24 and Col-0 and the reciprocal crosses. In an over-representation analysis it was tested if the overlap between the resulting gene lists of the two approaches is significantly larger than expected by chance. Top ranked genes in the results list of the systems biological analysis were significantly over-represented in the heterotic QTL candidate regions for either hybrid as well as regarding mid-parent and best-parent heterosis. This suggests that not only a few but rather several genes that influence biomass heterosis are located within each heterotic QTL region. Furthermore, the overlapping resulting genes of the two integrated approaches were particularly enriched in biomass related pathways. A chromosome-wise over-representation analysis gave rise to the hypothesis that chromosomes number 2 and 4 probably carry a majority of the genes involved in biomass heterosis in the early development of Arabidopsis thaliana.

sted, utgiver, år, opplag, sider
San Fransisco, USA: Public Library Science , 2012. Vol. 7, nr 11, artikkel-id e49951
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-40613DOI: 10.1371/journal.pone.0049951ISI: 000311885300075PubMedID: 23166802Scopus ID: 2-s2.0-84869231876OAI: oai:DiVA.org:oru-40613DiVA, id: diva2:777919
Tilgjengelig fra: 2015-01-09 Laget: 2015-01-09 Sist oppdatert: 2018-01-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Repsilber, Dirk

Søk i DiVA

Av forfatter/redaktør
Repsilber, Dirk
I samme tidsskrift
PLoS ONE

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 486 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf