oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning biomarkers of pluripotent stem cells in mouse
Institute of Computer Science, University of Osnabrück, Osnabrück, Germany.
Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostoch, Germany.
Leibniz Institute for Farm Animal Biology (FBN Dummerstorf ), Dummerstorf, Germany.ORCID-id: 0000-0002-7173-5579
Institute for Biostatistics and Informatics in Medicine and Ageing Research, University of Rostock, Rostoch, Germany; Department of Intelligent Systems, Jozef Stefan Institute, Ljubljana, Slovenia.
Vise andre og tillknytning
2011 (engelsk)Inngår i: DNA research, ISSN 1340-2838, E-ISSN 1756-1663, Vol. 18, nr 4, s. 233-51Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Pluripotent stem cells are able to self-renew, and to differentiate into all adult cell types. Many studies report data describing these cells, and characterize them in molecular terms. Machine learning yields classifiers that can accurately identify pluripotent stem cells, but there is a lack of studies yielding minimal sets of best biomarkers (genes/features). We assembled gene expression data of pluripotent stem cells and non-pluripotent cells from the mouse. After normalization and filtering, we applied machine learning, classifying samples into pluripotent and non-pluripotent with high cross-validated accuracy. Furthermore, to identify minimal sets of best biomarkers, we used three methods: information gain, random forests and a wrapper of genetic algorithm and support vector machine (GA/SVM). We demonstrate that the GA/SVM biomarkers work best in combination with each other; pathway and enrichment analyses show that they cover the widest variety of processes implicated in pluripotency. The GA/SVM wrapper yields best biomarkers, no matter which classification method is used. The consensus best biomarker based on the three methods is Tet1, implicated in pluripotency just recently. The best biomarker based on the GA/SVM wrapper approach alone is Fam134b, possibly a missing link between pluripotency and some standard surface markers of unknown function processed by the Golgi apparatus.

sted, utgiver, år, opplag, sider
Oxford, UK: Oxford University Press, 2011. Vol. 18, nr 4, s. 233-51
Emneord [en]
Pluripotency; machine learning; feature selection; genetic algorithm; support vector machine
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-40621DOI: 10.1093/dnares/dsr016ISI: 000294936100004PubMedID: 21791477Scopus ID: 2-s2.0-80051964025OAI: oai:DiVA.org:oru-40621DiVA, id: diva2:777969
Tilgjengelig fra: 2015-01-09 Laget: 2015-01-09 Sist oppdatert: 2018-05-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Repsilber, Dirk

Søk i DiVA

Av forfatter/redaktør
Repsilber, Dirk
I samme tidsskrift
DNA research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 174 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf