oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integrating functional knowledge during sample clustering for microarray data using unsupervised decision trees
Max Planck Institute for Molecular Plant Physiology, Golm, Germany.
University of Potsdam, Potsdam, Germany.ORCID-id: 0000-0002-7173-5579
Institute for Informatics, Ludwig Maximilians University,Munich, Germany.
Max Planck Institute for Molecular Plant Physiology, Golm, Germany; University of Potsdam, Potsdam, Germany.
2007 (engelsk)Inngår i: Biometrical Journal, ISSN 0323-3847, E-ISSN 1521-4036, Vol. 49, nr 2, s. 214-29Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Clustering of microarray gene expression data is performed routinely, for genes as well as for samples. Clustering of genes can exhibit functional relationships between genes; clustering of samples on the other hand is important for finding e.g. disease subtypes, relevant patient groups for stratification or related treatments. Usually this is done by first filtering the genes for high-variance under the assumption that they carry most of the information needed for separating different sample groups. If this assumption is violated, important groupings in the data might be lost. Furthermore, classical clustering methods do not facilitate the biological interpretation of the results. Therefore, we propose to methodologically integrate the clustering algorithm with prior biological information. This is different from other approaches as knowledge about classes of genes can be directly used to ease the interpretation of the results and possibly boost clustering performance. Our approach computes dendrograms that resemble decision trees with gene classes used to split the data at each node which can help to find biologically meaningful differences between the sample groups. We have tested the proposed method both on simulated and real data and conclude its usefulness as a complementary method, especially when assumptions of few differentially expressed genes along with an informative mapping of genes to different classes are met.

sted, utgiver, år, opplag, sider
Berlin, Germany: Akademie Verlag, 2007. Vol. 49, nr 2, s. 214-29
Emneord [en]
Clustering; functional ontologies; gene expression; integrative data analysis; microarray; samplewise clustering; UDT; unsupervised decision trees
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-40639DOI: 10.1002/bimj.200610278ISI: 000245911800004PubMedID: 17476945Scopus ID: 2-s2.0-34247388808OAI: oai:DiVA.org:oru-40639DiVA, id: diva2:778031
Tilgjengelig fra: 2015-01-09 Laget: 2015-01-09 Sist oppdatert: 2018-01-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Repsilber, Dirk

Søk i DiVA

Av forfatter/redaktør
Repsilber, Dirk
I samme tidsskrift
Biometrical Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 174 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf