oru.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses.
Institute for Molecular Evolution, Evolutionary Biology Centre of the University of Uppsala, Uppsala, Department of Biometry and Informatics, SLU, Uppsala.ORCID-id: 0000-0002-7173-5579
Department of Biometry and Informatics, SLU, Uppsala.
Institute for Molecular Evolution, Evolutionary Biology Centre of the University of Uppsala, Uppsala; Linnaeus Centre for Bioinformatics, Uppsala University and SLU, Uppsala, Sweden.
2002 (engelsk)Inngår i: Biosystems (Amsterdam. Print), ISSN 0303-2647, E-ISSN 1872-8324, Vol. 66, nr 1-2, s. 31-41Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Reverse engineering algorithms (REAs) aim at using gene expression data to reconstruct interactions in regulatory genetic networks. This may help to understand the basis of gene regulation, the core task of functional genomics. Collecting data for a number of environmental conditions is necessary to reengineer even the smallest regulatory networks with reasonable confidence. We systematically tested the requirements for the experimental design necessary for ranking alternative hypotheses about the structure of a given regulatory network. A genetic algorithm (GA) was used to explore the parameter space of a multistage discrete genetic network model with fixed connectivity and number of states per node. Our results show that it is not necessary to determine all parameters of the genetic network in order to rank hypotheses. The ranking process is easier the more experimental environmental conditions are used for the data set. During the ranking, the number of fixed parameters increases with the number of environmental conditions, while some errors in the hypothetical network structure may pass undetected, due to a maintained dynamical behaviour.

sted, utgiver, år, opplag, sider
Ireland: Elsevier, 2002. Vol. 66, nr 1-2, s. 31-41
Emneord [en]
Reverse engineering; genetic regulatory networks; genetic algorithm; gene expression data; experimental design
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-40648DOI: 10.1016/S0303-2647(02)00019-9PubMedID: 12204440Scopus ID: 2-s2.0-0036627676OAI: oai:DiVA.org:oru-40648DiVA, id: diva2:778054
Tilgjengelig fra: 2015-01-09 Laget: 2015-01-09 Sist oppdatert: 2018-01-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Repsilber, Dirk

Søk i DiVA

Av forfatter/redaktør
Repsilber, Dirk
I samme tidsskrift
Biosystems (Amsterdam. Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 188 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf