oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Developing and Testing methods for microarray data analysis Using an Artificial life framework
Institute of Medical Biometry and Statistics, Lübeck, Germany.ORCID-id: 0000-0002-7173-5579
Institute for Neuro- and Bioinformatics, Lübeck, Germany.
2003 (Engelska)Ingår i: Advances in artificial life: 7th European Conference, ECAL 2003 Dortmund, Germany, September 14-17, 2003 Proceedings / [ed] Banzhaf, W, Christaller, T, Dittrich, P, Kim, JT, Ziegler, J, Berlin, Germany, 2003, Vol. 2801, s. 686-695Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Microarray technology has resulted in large sets of gene expression data. Using these data to derive knowledge about the underlying mechanisms that control gene expression dynamics has become an important challenge. Adequate models of the fundamental principles of gene regulation, such as Artificial Life models of regulatory networks, are pivotal for progress in this area. In this contribution, we present a framework for simulating microarray gene expression experiments. Within this framework, artificial regulatory networks with a simple regulon structure are generated. Simulated expression profiles are obtained from these networks under a series of different environmental conditions. The expression profiles show a complex diversity. Consequently, success in using hierarchical clustering to detect groups of genes which form a regulon proves to depend strongly on the method which is used to quantify similarity between expression profiles. When measurements are noisy, even clusters of identically regulated genes are surprisingly difficult to detect. Finally, we suggest cluster support, a method based on overlaying multiple clustering trees, to find out which clusters in a tree are biologically significant.

Ort, förlag, år, upplaga, sidor
Berlin, Germany, 2003. Vol. 2801, s. 686-695
Serie
Lecture Notes in Computer Science ; 0302-9743
Nationell ämneskategori
Bioinformatik och systembiologi
Identifikatorer
URN: urn:nbn:se:oru:diva-40661DOI: 10.1007/978-3-540-39432-7_74ISI: 000187009400074Scopus ID: 2-s2.0-7444258701ISBN: 3-540-20057-6 (tryckt)OAI: oai:DiVA.org:oru-40661DiVA, id: diva2:778295
Konferens
7th European Conference on Artifical Life, Dortmund, Germany,14-17 September, 2003.
Tillgänglig från: 2015-01-09 Skapad: 2015-01-09 Senast uppdaterad: 2018-01-30Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Repsilber, Dirk

Sök vidare i DiVA

Av författaren/redaktören
Repsilber, Dirk
Bioinformatik och systembiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 173 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf