oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fuzzy model identification: Selected approaches
(Siemens Corporate R&D)
Department of Computer and Information Science, University of Linköping, Linköping, Sweden. (AASS)ORCID-id: 0000-0002-9477-4044
1997 (Engelska)Samlingsverk (redaktörskap) (Refereegranskat)
Abstract [en]

This carefully edited volume presents a collection of recent works in fuzzy model identification. It opens the field of fuzzy identification to conventional control theorists as a complement to existing approaches, provides practicing control engineers with the algorithmic and practical aspects of a set of new identification techniques, and emphasizes opportunities for a more systematic and coherent theory of fuzzy identification by bringing together methods based on different techniques but aiming at the identification of the same types of fuzzy models. In control engineering, mathematical models are often constructed, for example based on differential or difference equations or derived from physical laws without using system data (white-box models) or using data but no insight (black-box models). In this volume the authors choose a combination of these models from types of structures that are known to be flexible and successful in applications. They consider Mamdani, Takagi-Sugeno, and singleton models, employing such identification methods as clustering, neural networks, genetic algorithms, and classical learning. All authors use the same notation and terminology, and each describes the model to be identified and the identification technique with algorithms that will help the reader to apply the presented methods in his or her own environment to solve real-world problems. Furthermore, each author gives a practical example to show how the presented method works, and deals with the issues of prior knowledge, model complexity, robustness of the identification method, and real-world applications.

Ort, förlag, år, upplaga, sidor
Springer, 1997. , s. 319
Nyckelord [en]
fuzzy modelling, model identification
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
Datateknik; Reglerteknik
Identifikatorer
URN: urn:nbn:se:oru:diva-42514Libris ID: 8299522ISBN: 978-3-642-60767-7 (tryckt)ISBN: 3-540-62721-9 (tryckt)OAI: oai:DiVA.org:oru-42514DiVA, id: diva2:786810
Tillgänglig från: 2015-02-06 Skapad: 2015-02-06 Senast uppdaterad: 2017-10-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Driankov, Dimiter

Sök vidare i DiVA

Av författaren/redaktören
Driankov, Dimiter
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 446 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf