To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of X-ray Penetration Depth on Multi Material Computed Tomography Measurements
Örebro University, School of Science and Technology.ORCID iD: 0000-0002-9362-8328
Örebro University, School of Science and Technology.ORCID iD: 0000-0003-1655-0392
Örebro University, School of Science and Technology.ORCID iD: 0000-0003-1286-3420
Örebro University, School of Science and Technology.ORCID iD: 0000-0003-1408-2249
2016 (English)In: iCT 2016, NDT.net , 2016, p. 143-150Conference paper, Published paper (Refereed)
Abstract [en]

The complexity of today’s products and materials is ever increasing. There is a demand on the industry to produce lighter, stronger, and more precise products. A common practice to achieve such products is to combine different materials to enhance strengths and reduce weaknesses; multi material products. Fabricating complex parts using multi materials does, however, lead to an increased difficulty in metrological verification and material characterisation. The use of computed tomography is today widespread within the industry, providing new possibilities for internal measurements, but there are still many uncertainties associated with the method. It is well known that large variations in density of multi materials greatly affects the contrast obtained by computed tomography, resulting in difficulties to scan and acquire reliable data from certain material setups.In this work the effects on internal measurements as a consequence of differences in X-ray penetration depth have been studied with regards to multi material setups. The main interest was the ability to acquire measurements from internal features of material compositions that are commonly used in the industry. In the result, difficulties and uncertainties associated with computed tomography of multi materials are highlighted and suggestions on how to reduce problems and obtain a more reliable test method are discussed.

Place, publisher, year, edition, pages
NDT.net , 2016. p. 143-150
Keywords [en]
Multi-materials, computed tomography, X-ray penetration depth, dual-energy computed tomography
National Category
Mechanical Engineering
Research subject
Mechanical Engineering
Identifiers
URN: urn:nbn:se:oru:diva-47802OAI: oai:DiVA.org:oru-47802DiVA, id: diva2:898048
Conference
6th Conference on Industrial Computed Tomography (iCT 2016), Wels, Austria, February 9-12, 2016
Available from: 2016-01-27 Created: 2016-01-27 Last updated: 2020-01-31Bibliographically approved
In thesis
1. Only a Shadow: Industrial computed tomography investigation, and method development, concerning complex material systems
Open this publication in new window or tab >>Only a Shadow: Industrial computed tomography investigation, and method development, concerning complex material systems
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The complexity of components fabricated in today's industry is ever increasing. This increase is partly due to market pressure but it is also a result from progress in fabrication technologies that opens up new possibilities. The increased use of additive manufacturing and multi-material systems, especially, has driven the complexity of parts to new heights. The new complex material systems brings benefits in many areas such as; mechanical properties, weight optimisation, and sustainability. However, the increased complexity also makes material integrity investigations and dimensional control more difficult. In additive manufacturing, for example, internal features can be fabricated which cannot be seen or measured with conventional tools. There is thus a need for non-destructive inspection methods that can measure these geometries. Such a method is X-ray computed tomography. Computed tomography utilizes the X-rays ability to penetrate material to create 3D digital volumes of components. Measurements and material investigations can be performed in these volumes without any damage to the investigated component. However, computed tomography in material science is still not a fully mature method and there are many uncertainties associated with the investigation technique. In the work presented in this thesis geometries fabricated by various additive manufacturing processes have been investigated using computed tomography. Also in this work, a dual-energy computed tomography tool has been developed with the aim to increase the measurement consistency of computed tomography when investigating complex geometries and material combinations.

Place, publisher, year, edition, pages
Örebro: Örebro University, 2016. p. 61
Series
Örebro Studies in Technology, ISSN 1650-8580 ; 73
Keywords
Computed tomography, Dual-energy, Material investigation, Additive manufacturing, Measurement consistency
National Category
Other Mechanical Engineering
Research subject
Mechanical Engineering
Identifiers
urn:nbn:se:oru:diva-54880 (URN)978-91-87789-10-6 (ISBN)
Presentation
2017-01-19, HSM, Örebro universitet, Örebro, 13:15 (English)
Opponent
Supervisors
Projects
MultiMatCT
Available from: 2017-02-03 Created: 2017-01-20 Last updated: 2017-10-18Bibliographically approved
2. More Than a Shadow: Computed Tomography Method Development and Applications Concerning Complex Material Systems
Open this publication in new window or tab >>More Than a Shadow: Computed Tomography Method Development and Applications Concerning Complex Material Systems
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The complexity of the components fabricated in today's industry is ever increasing. This is partly due to market pressure, but it is also a result from recent progress in fabrication technologies that open up new design possibilities. The increased use of additive manufacturing and multi-material systems, especially, has driven the complexity of parts to new heights. The new complex material systems bring benets in many areas such as; mechanical properties, weight reduction, and multifunctions. However, the increased complexity also makes inspection and dimensional control more dicult. In additive manufacturing, for example, internal features can be fabricated which cannot be seen or measured with conventional tools. There is thus a need for non-destructive inspection methods that can measure these geometries. Such a method is X-ray computed tomography. Computed tomography utilizes the X-rays ability to penetrate material to create 3D digital volumes of components. Measurements and material investigations can be performed in these volumes without any damage to the investigated component. However, industrial computed tomography is still not a fully mature method and there are many uncertainties associated with the investigation technique. In this work, a dual-energy computed tomography tool has been developed with the aim to increase the performance of computed tomography when investigating complex geometries and material combinations. This method has been applied to various phantoms and an industrial case. Also, in this work, complex lattice structures fabricated with additive manufacturing have been investigated and analysed using computed tomography. The results show that the new DECT method improves measurement results and can be utilized to inspect multi-material components. The results also show that computed tomography can be used successfully to gain knowledge about complex lattices.

Place, publisher, year, edition, pages
Örebro: Örebro University, 2019. p. 139
Series
Örebro Studies in Technology, ISSN 1650-8580 ; 84
National Category
Other Mechanical Engineering
Identifiers
urn:nbn:se:oru:diva-73739 (URN)978-91-7529-286-1 (ISBN)
Public defence
2019-06-12, Örebro universitet, Teknikhuset, Hörsal T, Fakultetsgatan 1, Örebro, 13:15 (English)
Opponent
Supervisors
Available from: 2019-04-15 Created: 2019-04-15 Last updated: 2020-01-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Paper

Authority records

Jansson, AntonEkengren, JensZekavat, Amir RezaPejryd, Lars

Search in DiVA

By author/editor
Jansson, AntonEkengren, JensZekavat, Amir RezaPejryd, Lars
By organisation
School of Science and Technology
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 738 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf