oru.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using fuzzy logic to enhance classification of human motion primitives
Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova, Italy.
Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova, Italy.
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS)ORCID-id: 0000-0001-8229-1363
Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova, Italy.
2014 (Engelska)Ingår i: Information processing and management of uncertainty in knowledge-based systems, PT II, Springer, 2014, s. 596-605Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The design of automated systems for the recognition of specific human activities is among the most promising research activities in Ambient Intelligence. The literature suggests the adoption of wearable devices, relying on acceleration information to model the activities of interest and distance metrics for the comparison of such models with the run-time data. Most current solutions do not explicitly model the uncertainty associated with the recognition, but rely on crisp thresholds and comparisons which introduce brittleness and inaccuracy in the system. We propose a framework for the recognition of simple activities in which recognition uncertainty is modelled using possibility distributions. We show that reasoning about this explicitly modelled uncertainty leads to a system with enhanced recognition accuracy and precision.

Ort, förlag, år, upplaga, sidor
Springer, 2014. s. 596-605
Serie
Communications in Computer and Information Science, ISSN 1865-0929 ; 443
Nyckelord [en]
Activity recognition; Activities of Daily Living; wearable sensors; possibility measures
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-48016DOI: 10.1007/978-3-319-08855-6_60ISI: 000345122900060ISBN: 978-3-319-08854-9 (tryckt)ISBN: 978-3-319-08855-6 (tryckt)OAI: oai:DiVA.org:oru-48016DiVA, id: diva2:901048
Konferens
24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Kobe, Japan, August 31 - September 4, 2015
Tillgänglig från: 2016-02-05 Skapad: 2016-02-05 Senast uppdaterad: 2018-01-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Saffiotti, Alessandro

Sök vidare i DiVA

Av författaren/redaktören
Saffiotti, Alessandro
Av organisationen
Institutionen för naturvetenskap och teknik
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 493 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf