oru.sePublikationer
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparisons Of Some Weighting Methods For Nonresponse Adjustment
Örebro University, Orebro University School of Business, Örebro University, Sweden. Department of Mathematics and Informatics, Eduardo Mondlane University, Maputo, Mozambique.ORCID iD: 0000-0002-8693-3279
Örebro University, Orebro University School of Business, Örebro University, Sweden. Department of Research and Development, Statistics Sweden.ORCID iD: 0000-0003-1040-3332
2015 (English)In: Lithuaninan Journal of Statistics, ISSN 2029-7262, Vol. 54, no 1, 69-83 p.Article in journal (Refereed) Published
Abstract [en]

Sample and population auxiliary information have been demonstrated to be useful and yield approximately equal resultsin large samples. Several functional forms of weights are suggested in the literature. This paper studies the properties of calibrationestimators when the functional form of response probability is assumed to be known. The focus is on the difference between populationand sample level auxiliary information, the latter being demonstrated to be more appropriate for estimating the coefficients in theresponse probability model. Results also suggest a two-step procedure, using sample information for model coefficient estimation inthe first step and calibration estimation of the study variable total in the second step.

Place, publisher, year, edition, pages
Vilnius: Lietuvos Statistiku Sajunga , 2015. Vol. 54, no 1, 69-83 p.
Keyword [en]
calibration, auxiliary variables, response probability, maximum likelihood
National Category
Probability Theory and Statistics
Research subject
Statistics
Identifiers
URN: urn:nbn:se:oru:diva-52792OAI: oai:DiVA.org:oru-52792DiVA: diva2:1018403
Available from: 2016-10-04 Created: 2016-10-04 Last updated: 2017-03-02Bibliographically approved
In thesis
1. Calibration Adjustment for Nonresponse in Sample Surveys
Open this publication in new window or tab >>Calibration Adjustment for Nonresponse in Sample Surveys
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, we discuss calibration estimation in the presence of nonresponse with a focus on the linear calibration estimator and the propensity calibration estimator, along with the use of different levels of auxiliary information, that is, sample and population levels. This is a fourpapers- based thesis, two of which discuss estimation in two steps. The two-step-type estimator here suggested is an improved compromise of both the linear calibration and the propensity calibration estimators mentioned above. Assuming that the functional form of the response model is known, it is estimated in the first step using calibration approach. In the second step the linear calibration estimator is constructed replacing the design weights by products of these with the inverse of the estimated response probabilities in the first step. The first step of estimation uses sample level of auxiliary information and we demonstrate that this results in more efficient estimated response probabilities than using population-level as earlier suggested. The variance expression for the two-step estimator is derived and an estimator of this is suggested. Two other papers address the use of auxiliary variables in estimation. One of which introduces the use of principal components theory in the calibration for nonresponse adjustment and suggests a selection of components using a theory of canonical correlation. Principal components are used as a mean to accounting the problem of estimation in presence of large sets of candidate auxiliary variables. In addition to the use of auxiliary variables, the last paper also discusses the use of explicit models representing the true response behavior. Usually simple models such as logistic, probit, linear or log-linear are used for this purpose. However, given a possible complexity on the structure of the true response probability, it may raise a question whether these simple models are effective. We use an example of telephone-based survey data collection process and demonstrate that the logistic model is generally not appropriate.

Place, publisher, year, edition, pages
Örebro: Örebro university, 2016. 9 p.
Series
Örebro Studies in Statistics, ISSN 1651-8608 ; 8
Keyword
Auxiliary variables, Calibration, Nonresponse, principal com-ponents, regression estimator, response probability, survey sampling, two-step estimator, variance estimator, weighting
National Category
Probability Theory and Statistics
Research subject
Statistics
Identifiers
urn:nbn:se:oru:diva-51966 (URN)978-91-7529-160-4 (ISBN)
Public defence
2016-10-27, Örebro universitet, Musikhögskolan, Hörsalen, Fakultetsgatan 1, Örebro, 14:15 (Swedish)
Opponent
Supervisors
Available from: 2016-09-05 Created: 2016-09-05 Last updated: 2016-11-03Bibliographically approved

Open Access in DiVA

Comparisons Of Some Weighting Methods For Nonresponse Adjustment(398 kB)83 downloads
File information
File name FULLTEXT01.pdfFile size 398 kBChecksum SHA-512
a6891dbdb272a7354246c5aa420e0031c844f2da159ffb9a9a895a0d2c15e09e89b7d3fbd961dd73d46b31d3a6d0d1bdd182887d5523365535118bcb66dffb6c
Type fulltextMimetype application/pdf

Other links

Comparisons Of Some Weighting Methods For Nonresponse Adjustment

Search in DiVA

By author/editor
Rota, Bernardo JoãoLaitila, Thomas
By organisation
Orebro University School of Business, Örebro University, Sweden
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 83 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 173 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf