Changes in turnover rather than production regulate biomass of ectomycorrhizal fungal mycelium across a Pinus sylvestris chronosequenceShow others and affiliations
2017 (English)In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 214, no 1, p. 424-431Article in journal (Refereed) Published
Abstract [en]
In boreal forest soils, ectomycorrhizal fungi are fundamentally important for carbon (C) dynamics and nutrient cycling. Although their extraradical mycelium (ERM) is pivotal for processes such as soil organic matter build-up and nitrogen cycling, very little is known about its dynamics and regulation.
In this study, we quantified ERM production and turnover, and examined how these two processes together regulated standing ERM biomass in seven sites forming a chronosequence of 12- to 100-yr-old managed Pinus sylvestris forests. This was done by determining ERM biomass, using ergosterol as a proxy, in sequentially harvested in-growth mesh bags and by applying mathematical models.
Although ERM production declined with increasing forest age from 1.2 to 0.5 kg ha(-1) d(-1) , the standing biomass increased from 50 to 112 kg ha(-1) . This was explained by a drastic decline in mycelial turnover from seven times to one time per year with increasing forest age, corresponding to mean residence times from 25 d up to 1 yr.
Our results demonstrate that ERM turnover is the main factor regulating biomass across differently aged forest stands. Explicit inclusion of ERM parameters in forest ecosystem C models may significantly improve their capacity to predict responses of mycorrhiza-mediated processes to management and environmental changes.
Place, publisher, year, edition, pages
John Wiley & Sons, 2017. Vol. 214, no 1, p. 424-431
Keywords [en]
chronosequence, ectomycorrhiza, ergosterol, extramatrical mycelium, extraradical mycelium, fungal biomass, production, turnover
National Category
Forest Science
Research subject
Enviromental Science
Identifiers
URN: urn:nbn:se:oru:diva-57414DOI: 10.1111/nph.14379ISI: 000398130300038PubMedID: 27997034Scopus ID: 2-s2.0-85007380512OAI: oai:DiVA.org:oru-57414DiVA, id: diva2:1091017
Note
Funding Agency:
Svenska Forskningsrådet Formas, grant no 2011-1747
2017-04-252017-04-252018-12-04Bibliographically approved