oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bildklassificering av bilar med hjälp av deep learning
Örebro University, School of Science and Technology.
2017 (Swedish)Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesisAlternative title
Image Classification of Cars using Deep Learning (English)
Abstract [sv]

Den här rapporten beskriver hur en bildklassificerare skapades med förmågan att via en given bild på en bil avgöra vilken bilmodell bilen är av. Klassificeringsmodellen utvecklades med hjälp av bilder som företaget CAB sparat i samband med försäkringsärenden som behandlats via deras nuvarande produkter.

Inledningsvis i rapporten så beskrivs teori för maskininlärning och djupinlärning på engrundläggande nivå för att leda in läsaren på ämnesområdet som rör rapporten, och fortsätter sedan med problemspecifika metoder som var till nytta för det aktuella problemet.

Rapporten tar upp metoder för hur datan bearbetats i förväg, hur träningsprocessen gick  till med de valda verktygen samt diskussion kring resultatet och vad som påverkade det – med kommentarer om vad som kan göras i framtiden för att förbättra slutprodukten.

Abstract [en]

This report describes how an image classifier was created with the ability to identify car makeand model from a given picture of a car. The classifier was developed using pictures that the company CAB had saved from insurance errands that was managed through their current products.

First of all the report begins with a brief theoretical introduction to machine learning and deep learning to guide the reader in to the subject of the report, and then continues with problemspecific methods that were of good use for the project.

The report brings up methods for how the data was processed before training took place, how the training process went with the chosen tools for this project and also discussion about the result and what effected it – with comments about what can be done in the future to improve the end product.

Place, publisher, year, edition, pages
2017. , p. 41
Keyword [en]
image recognition, deep learning, car model, classification, machine learning
Keyword [sv]
bildigenkänning, djupinlärning, bilmodell, klassificering, maskininlärning
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:oru:diva-58361OAI: oai:DiVA.org:oru-58361DiVA, id: diva2:1117115
Subject / course
Computer Engineering
Presentation
2017-05-29, T101, Örebro universitet, Fakultetsgatan 1, 702 81, Örebro, 13:15 (Swedish)
Supervisors
Examiners
Available from: 2017-06-28 Created: 2017-06-28 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

fulltext(2733 kB)75 downloads
File information
File name FULLTEXT01.pdfFile size 2733 kBChecksum SHA-512
14ef2535231e8068b4ae4b8d264ff2d835aaeab584717786b2a996b28a2d0635ebb12a71dadeade1d9ec9af5cfbb6d3d5027e490416017a864ef458145840d84
Type fulltextMimetype application/pdf

By organisation
School of Science and Technology
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 75 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 513 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf