Theory of L-edge spectroscopy of strongly correlated systemsShow others and affiliations
2017 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 96, no 24, article id 245131Article in journal (Refereed) Published
Abstract [en]
X-ray absorption spectroscopy measured at the L edge of transition metals (TMs) is a powerful element selective tool providing direct information about the correlation effects in the 3d states. The theoretical modeling of the 2p -> 3d excitation processes remains to be challenging for contemporary ab initio electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work, we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. [Phys. Rev. B 85, 165113 (2012)]. In this approach, a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation, we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM 3d states, in order to construct the SIAM. The developed computational scheme is applied to calculate the L-edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed.
Place, publisher, year, edition, pages
American Physical Society, 2017. Vol. 96, no 24, article id 245131
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:oru:diva-63964DOI: 10.1103/PhysRevB.96.245131ISI: 000418573600012Scopus ID: 2-s2.0-85039461569OAI: oai:DiVA.org:oru-63964DiVA, id: diva2:1172113
Funder
Knut and Alice Wallenberg Foundation, 2013.0020 2012.0031Carl Tryggers foundation
Note
Funding Agency:
EUSpec COST
2018-01-092018-01-092018-09-07Bibliographically approved