We examine the spin asymmetry of ground states for two-dimensional, harmonically trapped two-component gases of fermionic atoms at zero temperature with weakly repulsive short-range interactions. Our main result is that, in contrast to the three-dimensional case, in two dimensions a non-trivial spin-asymmetric phase can only be caused by the shell structure. A simple, qualitative description is given in terms of an approximate single-particle model, comparing well to the standard results of Hartree-Fock or direct diagonalization methods.