Machine learning algorithms, despite their increasing success in handling object recognition tasks, still seldom perform without error. Often the process of understanding why the algorithm has failed is the task of the human who, using domain knowledge and contextual information, can discover systematic shortcomings in either the data or the algorithm. This paper presents an approach where the process of reasoning about errors emerging from a machine learning framework is automated using symbolic techniques. By utilizing spatial and geometrical reasoning between objects in a scene, the system is able to describe misclassified regions in relation to its context. The system is demonstrated in the remote sensing domain where objects and entities are detected in satellite images.
IJCAI Workshop on Learning and Reasoning: Principles & Applications to Everyday Spatial and Temporal Knowledge