oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Precedent Based Design Foundations for Parametric Design: The Case of Navigation and Wayfinding
Örebro University, School of Science and Technology. (AASS)ORCID iD: 0000-0003-0392-026X
Örebro University, School of Science and Technology. (AASS)ORCID iD: 0000-0002-6290-5492
Systems Engineering, Civil Engineering Institute, TU Berlin, Germany.
2018 (English)In: Advances in Computational Design, ISSN 2383-8477, Vol. 3, no 4, p. 339-366Article in journal (Refereed) Published
Abstract [en]

Parametric design systems serve as powerful assistive tools in the design process by providing a flexible approach for the generation of a vast number of design alternatives. However, contemporary parametric design systems focus primarily on low-level engineering and structural forms, without an explicit means to also take into account high-level, cognitively motivated people-centred design goals.

We present a precedent-based parametric design method that integrates people-centred design “precedents” rooted in empirical evidence directly within state of the art parametric design systems. As a use-case, we illustrate the general method in the context of an empirical study focusing on the multi-modal analysis of wayfinding behaviour in two large-scale healthcare environments. With this use-case, we demonstrate the manner in which: (1). a range of empirically established design precedents —e.g., pertaining to visibility and navigation— may be articulated as design constraints to be embedded directly within state of the art parametric design tools (e.g., Grasshopper); and (2). embedded design precedents lead to the (parametric) generation of a number of morphologies that satisfy people-centred design criteria (in this case, pertaining to wayfinding).

Our research presents an exemplar for the integration of cognitively motivated design goals with parametric design-space exploration methods. We posit that this opens-up a range of technological challenges for the engineering and development of next-generation computer aided architecture design systems.

Place, publisher, year, edition, pages
Techno-Press , 2018. Vol. 3, no 4, p. 339-366
Keywords [en]
human behaviour studies, navigation, wayfinding, architecture design, spatial cognition, visual perception, parametric design, architectural computing, design computing
National Category
Computer and Information Sciences Human Aspects of ICT Architectural Engineering
Research subject
Computer Science; Psychology
Identifiers
URN: urn:nbn:se:oru:diva-69940DOI: 10.12989/acd.2018.3.4.339ISI: 000448366300002OAI: oai:DiVA.org:oru-69940DiVA, id: diva2:1259336
Available from: 2018-10-29 Created: 2018-10-29 Last updated: 2019-03-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textJournal webpage

Authority records BETA

Kondyli, VasilikiBhatt, Mehul

Search in DiVA

By author/editor
Kondyli, VasilikiBhatt, Mehul
By organisation
School of Science and Technology
Computer and Information SciencesHuman Aspects of ICTArchitectural Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 147 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf