To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adding Salt to Pepper: A Structured Security Assessment over a Humanoid Robot
Örebro University, School of Science and Technology. (Centre for Applied Autonomous Sensor Systems (AASS))ORCID iD: 0000-0001-9293-7711
DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
Örebro University, School of Science and Technology. DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark. (Centre for Applied Autonomous Sensor Systems (AASS))ORCID iD: 0000-0001-9575-2990
2018 (English)In: Proceedings of the 13th International Conference on Availability, Reliability and Security, ACM , 2018, article id 22Conference paper, Published paper (Refereed)
Abstract [en]

The rise of connectivity, digitalization, robotics, and artificial intelligence (AI) is rapidly changing our society and shaping its future development. During this technological and societal revolution, security has been persistently neglected, yet a hacked robot can act as an insider threat in organizations, industries, public spaces, and private homes. In this paper, we perform a structured security assessment of Pepper, a commercial humanoid robot. Our analysis, composed by an automated and a manual part, points out a relevant number of security flaws that can be used to take over and command the robot. Furthermore, we suggest how these issues could be fixed, thus, avoided in the future. The very final aim of this work is to push the rise of the security level of IoT products before they are sold on the public market.

Place, publisher, year, edition, pages
ACM , 2018. article id 22
Series
ACM International Conference Proceeding Series
Keywords [en]
Internet of Things (IoT), Penetration Testing, Pepper, Robot, Security
National Category
Computer and Information Sciences Robotics
Identifiers
URN: urn:nbn:se:oru:diva-71106DOI: 10.1145/3230833.3232807ISI: 000477981800043Scopus ID: 2-s2.0-85055287152ISBN: 978-1-4503-6448-5 (print)OAI: oai:DiVA.org:oru-71106DiVA, id: diva2:1275165
Conference
13th International Conference on Availability, Reliability and Security (ARES 2018), Hamburg, Germany, August 27-30, 2018
Available from: 2019-01-04 Created: 2019-01-04 Last updated: 2021-01-07Bibliographically approved
In thesis
1. Securing the Internet of Things with Security-by-Contract
Open this publication in new window or tab >>Securing the Internet of Things with Security-by-Contract
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Smart homes, industry, healthcare, robotics; virtually every market has seen the uprising of Internet of Things (IoT) devices with different degrees and nuances. IoT devices embody different desirable characteristics, such as mobility, ubiquity, variety, and affordability. All combined, these features made so that IoT devices reached 35 billion units in the world. However, the sudden uprising of market demand put enormous pressure on manufacturers. The necessity of delivering to customers as many devices as possible, in the shortest time possible, leads manufacturers to overlook features that are not perceived critical by the users, such as resiliency to cyberattacks. This led to severe security issues. The prime example is Mirai, a malware that infected hundreds of thousands of IoT devices in 2016 and used them to strike lethal Distributed Denial of Service (DDoS) attacks.

In the first part of this thesis, we present the state of the art regarding IoT devices security resilience. In particular, we provide relevant examples of breaches, an analysis of the relationship between IoT and Cloud from a security point of view, and an example of an IoT device penetration test. Then, we focus on the usage of IoT devices in DDoS-enabled botnets and we provide an extensive study of DDoS-enabling malwares, discussing their evolution and their capabilities.

In the second part, we contextualise the gathered knowledge and we show that the highlighted problems stem from two main causes: insecure configurations and insufficient secure configurability.We also show that, to address these two issues, it is necessary to equip IoT devices with precise and formal descriptions of their behaviour. Therefore, we propose SC4IoT, a security framework for IoT devices that combines Security-by-Contract (SC) paradigm and Fog Computing paradigm. First, we provide a thorough breakdown of our proposal. We start from high-level lifecycles that describe how devices participate to SC4IoT. Then, we discuss the pillars that compose the framework (e.g., security contracts and security policies), together with their formal descriptions. Last, we provide precise algorithms for achieving security-policy matching capabilities, as well as routines for allowing the framework to deal with dynamic changes while maintaining consistency.

Place, publisher, year, edition, pages
Örebro: Örebro University, 2021. p. 55
Series
Örebro Studies in Technology, ISSN 1650-8580 ; 90
National Category
Computer Sciences
Identifiers
urn:nbn:se:oru:diva-88151 (URN)978-91-7529-364-6 (ISBN)
Public defence
2021-01-29, Örebro universitet, Långhuset, Hörsal L2 (and online (zoom)), Fakultetsgatan 1, Örebro, 13:00 (English)
Opponent
Supervisors
Available from: 2020-12-18 Created: 2020-12-18 Last updated: 2021-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Giaretta, AlbertoDragoni, Nicola

Search in DiVA

By author/editor
Giaretta, AlbertoDragoni, Nicola
By organisation
School of Science and Technology
Computer and Information SciencesRobotics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 360 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf