To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ribosome specialization and its potential role in the control of protein translation and skeletal muscle size
Örebro University, School of Health Sciences.ORCID iD: 0000-0002-5322-4150
2019 (English)In: Journal of applied physiology, ISSN 8750-7587, E-ISSN 1522-1601, Vol. 127, no 2, p. 599-607Article, review/survey (Refereed) Published
Abstract [en]

The ribosome is typically viewed as a supramolecular complex with constitutive and invariant capacity in mediating translation of mRNA into protein. This view has been challenged by recent research revealing that ribosome composition could be heterogeneous, and this heterogeneity leads to functional ribosome specialization. This review presents the idea that ribosome heterogeneity results from changes in its various components, including variations in ribosomal protein (RP) composition, post-translational modifications of RPs, changes in ribosomal-associated proteins, alternative forms of rRNA and post-transcriptional modifications of rRNAs. Ribosome heterogeneity could be orchestrated at several levels and may depend on numerous factors, such as the subcellular location, cell type and tissue specificity, the development state, cell state, ribosome biogenesis, RP turnover, physiological stimuli and circadian rhythm. Ribosome specialization represents a completely new concept for the regulation of gene expression. Specialized ribosomes could modulate several aspects of translational control, such as mRNA translation selectivity, translation initiation, translational fidelity and translation elongation. Recent research indicates that the expression of Rpl3 is markedly increased, while that of Rpl3l is highly reduced during mouse skeletal muscle hypertrophy. Moreover, Rpl3l overexpression impairs the growth and myogenic fusion of myotubes. Although the function of Rpl3 and Rpl3l in the ribosome remains to be clarified, these findings suggest that ribosome specialization may be potentially involved in the control of protein translation and skeletal muscle size. Limited data concerning ribosome specialization are currently available in skeletal muscle. Future investigations have the potential to delineate the function of specialized ribosomes in skeletal muscle.

Place, publisher, year, edition, pages
American Physiological Society , 2019. Vol. 127, no 2, p. 599-607
Keywords [en]
Control of muscle mass, Functional specialization, Ribosome heterogeneity, Skeletal muscle hypertrophy
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) Physiology
Identifiers
URN: urn:nbn:se:oru:diva-71179DOI: 10.1152/japplphysiol.00946.2018ISI: 000482199900032PubMedID: 30605395Scopus ID: 2-s2.0-85071496985OAI: oai:DiVA.org:oru-71179DiVA, id: diva2:1277230
Available from: 2019-01-09 Created: 2019-01-09 Last updated: 2019-11-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Chaillou, Thomas

Search in DiVA

By author/editor
Chaillou, Thomas
By organisation
School of Health Sciences
In the same journal
Journal of applied physiology
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)Physiology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 421 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf