Open this publication in new window or tab >>Show others...
2019 (English)In: Environmental Science and Pollution Research, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 26, no 9, p. 9097-9088Article in journal (Refereed) Published
Abstract [en]
Plastic is able to sorb environmental pollutants from ambient water and might act as a vector for these pollutants to marine organisms. The potential toxicological effects of plastic-sorbed pollutants in marine organisms have not been thoroughly assessed. In this study, organic extracts from four types of plastic deployed for 9 or 12 months in San Diego Bay, California, were examined for their potential to activate the aryl hydrocarbon receptor (AhR) pathway by use of the H4IIE-luc assay. Polycyclic aromatic hydrocarbons (PAH), including the 16 priority PAHs, were quantified. The AhR-mediated potency in the deployed plastic samples, calculated as bio-TEQ values, ranged from 2.7 pg/g in polyethylene terephthalate (PET) to 277 pg/g in low-density polyethylene (LDPE). Concentrations of the sum of 24 PAHs in the deployed samples ranged from 4.6 to 1068 ng/g. By use of relative potency factors (REP), a potency balance between the biological effect (bio-TEQs) and the targeted PAHs (chem-TEQs) was calculated to 24-170%. The study reports, for the first time, in vitro AhR-mediated potencies for different deployed plastics, of which LDPE elicited the greatest concentration of bio-TEQs followed by polypropylene (PP), PET, and polyvinylchloride (PVC).
Place, publisher, year, edition, pages
Springer, 2019
Keywords
Ah receptor, H4IIE-luc, In vitro bioassays, Microplastics, PAH
National Category
Environmental Sciences
Identifiers
urn:nbn:se:oru:diva-72376 (URN)10.1007/s11356-019-04281-4 (DOI)000464851100063 ()30715715 (PubMedID)2-s2.0-85061216163 (Scopus ID)
Funder
Swedish Research Council Formas, 223-2014-1064Knowledge Foundation
2019-02-112019-02-112022-02-03Bibliographically approved