oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Skew-symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations
Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.
Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.
Institute of Mathematics, Kiev, Ukraine.
2013 (English)In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 438, no 8, p. 3375-3396Article in journal (Refereed) Published
Abstract [en]

The homogeneous system of matrix equations (X(T)A + AX, (XB)-B-T + BX) = (0, 0), where (A, B) is a pair of skew-symmetric matrices of the same size is considered: we establish the general solution and calculate the codimension of the orbit of (A, B) under congruence. These results will be useful in the development of the stratification theory for orbits of skew-symmetric matrix pencils.

Place, publisher, year, edition, pages
Elsevier, 2013. Vol. 438, no 8, p. 3375-3396
Keywords [en]
Pair of skew-symmetric matrices, Matrix equations, Orbits, Codimension
National Category
Algebra and Logic
Identifiers
URN: urn:nbn:se:oru:diva-74895DOI: 10.1016/j.laa.2012.11.025ISI: 000316521500015Scopus ID: 2-s2.0-84875429601OAI: oai:DiVA.org:oru-74895DiVA, id: diva2:1332890
Funder
eSSENCE - An eScience CollaborationSwedish Research Council, A0581501Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-07-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Dmytryshyn, AndriiKågström, Bo

Search in DiVA

By author/editor
Dmytryshyn, AndriiKågström, Bo
In the same journal
Linear Algebra and its Applications
Algebra and Logic

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf