oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting Comorbid Disorders in ADHD Using Machine Learning
SUNY Upstate Medical University, Syracuse NY, USA.
SUNY Upstate Medical University, Syracuse NY, USA.
Örebro University, Örebro, Sweden.
Örebro University, School of Medical Sciences.ORCID iD: 0000-0002-6851-3297
2019 (English)In: Biological Psychiatry, ISSN 0006-3223, E-ISSN 1873-2402, Vol. 85, no 10, p. S6-S6Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 85, no 10, p. S6-S6
Keywords [en]
ADHD, Machine Learning, Substance Use Disorders, Psychiatric Comorbidities, Prospective Prediction
National Category
Neurology Psychiatry
Identifiers
URN: urn:nbn:se:oru:diva-75258DOI: 10.1016/j.biopsych.2019.03.029ISI: 000472661000016OAI: oai:DiVA.org:oru-75258DiVA, id: diva2:1338853
Conference
74th Annual Meeting of the Society-of-Biological-Psychiatry (SOBP), Chicago, IL, USA, May 16-18, 2019
Note

Funding Agency:

European Union  667302

Available from: 2019-07-24 Created: 2019-07-24 Last updated: 2019-07-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Larsson, Henrik

Search in DiVA

By author/editor
Larsson, Henrik
By organisation
School of Medical Sciences
In the same journal
Biological Psychiatry
NeurologyPsychiatry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf