In this study, a new integral non-singular terminal sliding mode control method for nonlinear systems is introduced. The proposed controller is designed by defining a new sliding surface with an additional integral part. This new manifold is first introduced into the second-order system and then expanded to nth-order systems. The stability of the control system is demonstrated for both second-order and nth-order systems by using the Lyapunov stability theory. The proposed controller is applied to a robotic manipulator as a case study for second-order systems, and a servo-hydraulic system as a case study for third-order systems. The results are presented and discussed.