To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Parallel Bayesian Inference for High-Dimensional Dynamic Factor Copulas
Universidad Carlos III de Madrid, Madrid, Spain.ORCID iD: 0000-0002-0682-8584
Universidad Carlos III de Madrid, Madrid, Spain; Instituto Flores de Lemus, Universidad Carlos III de Madrid, Madrid, Spain.
Universidad Carlos III de Madrid, Madrid, Spain; Instituto Flores de Lemus, Universidad Carlos III de Madrid, Madrid, Spain.
2019 (English)In: Journal of Financial Econometrics, ISSN 1479-8409, E-ISSN 1479-8417, Vol. 17, no 1, p. 118-151Article in journal (Refereed) Published
Abstract [en]

To account for asymmetric dependence in extreme events, we propose a dynamic generalized hyperbolic skew Student-t factor copula where the factor loadings follow generalized autoregressive score processes. Conditioning on the latent factor, the components of the return series become independent, which allows us to run Bayesian estimation in a parallel setting. Hence, Bayesian inference on different specifications of dynamic one factor copula models can be done in a few minutes. Finally, we illustrate the performance of our proposed models on the returns of 140 companies listed in the S&P500 index. We compare the prediction power of different competing models using value-at-risk (VaR), and conditional VaR (CVaR), and show how to obtain optimal portfolios in high dimensions based on minimum CVaR.

Place, publisher, year, edition, pages
Oxford University Press, 2019. Vol. 17, no 1, p. 118-151
Keywords [en]
Bayesian inference, factor copula models, GAS model, generalized hyperbolic skew Student-t factor copula, parallel estimation
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:oru:diva-76805DOI: 10.1093/jjfinec/nby032ISI: 000462552500005Scopus ID: 2-s2.0-85062334137OAI: oai:DiVA.org:oru-76805DiVA, id: diva2:1355071
Note

Funding Agency:

Spanish Ministry of Economy and Competitiveness  ECO2015-66593-P

Available from: 2019-09-26 Created: 2019-09-26 Last updated: 2020-01-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Nguyen, Hoang

Search in DiVA

By author/editor
Nguyen, Hoang
In the same journal
Journal of Financial Econometrics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 374 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf