oru.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fractionation and determination of Ah receptor (AhR) agonists in organic waste after anaerobic biodegradation and in batch experiments with PCB and decaBDE
Örebro University, Department of Natural Sciences.
Örebro University, Department of Natural Sciences.
Örebro University, Department of Natural Sciences.ORCID iD: 0000-0001-6217-8857
Show others and affiliations
(English)Manuscript (Other academic)
National Category
Biological Sciences
Research subject
Biology
Identifiers
URN: urn:nbn:se:oru:diva-2934OAI: oai:DiVA.org:oru-2934DiVA, id: diva2:135645
Available from: 2005-11-04 Created: 2005-11-04 Last updated: 2017-10-18Bibliographically approved
In thesis
1. Bioassay analysis of dioxin-like compounds: response interactions and environmental transformation of Ah receptor agonists
Open this publication in new window or tab >>Bioassay analysis of dioxin-like compounds: response interactions and environmental transformation of Ah receptor agonists
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Dioxin-like compounds mediate their toxicity by binding to the aryl hydrocarbon receptor (AhR) and through this receptor a cascade of biochemical and toxic events are triggered. Mechanism-specific dioxin bioassays utilise the AhR coupled induction of endogenous CYP1A proteins or reporter gene systems for detection of dioxin-like compounds and other AhR ligands. The use of mechanism-specific in vitro bioassays as a complement or alternative to conventional GC-MS analysis of dioxin-like compounds has gained acceptance over the last years and is also in part a search for a tool for rapid and facilitated dioxin risk assessment.

This thesis includes several applications for bioassay analysis using the two bioassays Dioxin Responsive Chemically Activated Luciferase eXpression assay (DR-CALUX) and Chick Embryo Liver Culture Assay for Dioxins (CELCAD). The two dioxin bioassays were used to study the AhR mediated induction for single compounds, as well as for mixtures of AhR active compounds in different sample matrices, also including studies of the influence of clean-up methods and fractionation on bioassay response.

Bioanalysis gave valuable information on the toxicological relevance of decaBDE UV photoproducts. The bioassay methodology was able to reflect the actual variation in PBDF formation, and enabled a good estimation of toxicity of the congeners formed, regardless of chemical identification and congener specific potency data. The congeners formed had low potencies compared to the most toxic 2,3,7,8-substituted congeners, but the high concentrations resulted in considerable levels of TEQs.

For complex samples like organic household waste digestates it is advisable to use both bio- and chemical analysis, for confirmation of results, as far as possible. The bioassay-directed fractionation approach requires several fractionation steps (i.e. different methods) in order to obtain well-defined fractions, from which detailed conclusions can be drawn.

Also, proper analysis of human adipose tissue, although by far less complex than organic household waste, requires fractionation. Bioanalysis of these samples showed large deviations from the additivity assumption applied in the TEF calculation from chemical analysis. Thus, it is not clear how to interpret the bioassay results in relation to chemical results, although both methods gave the same information on relative levels of AhR agonists and showed good reproducibility.

Both DR-CALUX and CELCAD proved to be useful for AhR agonist analysis in mixtures and for single compounds. The DR-CALUX enables more rapid analysis of large number of samples and is therefore, a more suitable tool for AhR agonist detection, whereas CELCAD has more limitations and is more suitable for the study of AhR mediated toxicity with special emphasis on avian species. In vitro bioassays have many implications for the analysis of AhR agonists, yielding reliable and reproducible results, provided that proper clean-up and fractionation of samples is applied. Bioassays enable fast determinations of total or integrated effects of AhR ligands in samples, as well as specific potency studies. Thus, bioassays are in all a valuable and necessary complement to chemical analysis.

Place, publisher, year, edition, pages
Örebro: Örebro universitetsbibliotek, 2005. p. 58
Series
Örebro Studies in Biology, ISSN 1650-8793 ; 3
Keyword
bioassay, dioxin-like, Ah receptor
National Category
Biological Sciences
Research subject
Biology
Identifiers
urn:nbn:se:oru:diva-192 (URN)91-7668-456-3 (ISBN)
Public defence
2005-11-25, Hörsal P2, Prismahuset, Fakultetsgatan 1, Örebro, 10:00
Opponent
Supervisors
Available from: 2005-11-04 Created: 2005-11-04 Last updated: 2017-10-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Olsman, HelenaBjörnfoth, Helénvan Bavel, BertEngwall, Magnus

Search in DiVA

By author/editor
Olsman, HelenaBjörnfoth, Helénvan Bavel, BertEngwall, Magnus
By organisation
Department of Natural Sciences
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf