To Örebro University

oru.seÖrebro University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting Accuracy of Default Credit Card Clients by Using Various Machine Learning Techniques
Örebro University, Örebro University School of Business.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 10 credits / 15 HE creditsStudent thesis
Place, publisher, year, edition, pages
2019. , p. 26
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:oru:diva-77527OAI: oai:DiVA.org:oru-77527DiVA, id: diva2:1363351
Subject / course
Statistik
Supervisors
Examiners
Available from: 2019-10-22 Created: 2019-10-22 Last updated: 2019-10-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
Örebro University School of Business
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 74 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf