Open this publication in new window or tab >>2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Staphylococcus epidermidis is ubiquitous in the human microbiota, but also an important pathogen in healthcare-associated infections, such as prosthetic joint infections (PJIs). In this thesis, aspects of the molecular epidemiology of S. epidermidis in PJIs were investigated with the aim of improving our understanding of the pre- and perioperative measures required to reduce the incidence of S. epidermidis PJIs.
In Paper I, S. epidermidis retrieved from air sampling in the operating field during arthroplasty was characterized by multilocus sequence typing and antibiotic susceptibility testing. No isolates belonging to sequence types (STs) 2 and 215, previously associated with PJIs, were found in the air of the operating field. During air sampling, several Staphylococcus pettenkoferi isolates were identified, and as a spin-off of Paper I, the genomic relatedness of these isolates to S. pettenkoferi isolates from blood cultures was described in Paper II.
In Paper III, genetic traits distinguishing S. epidermidis isolated from PJIs were determined using genome-wide association study accounting for population effects after whole-genome sequencing (WGS) of a population- based 10-year collection of S. epidermidis isolates from PJIs and of nasal isolates retrieved from patients scheduled for arthroplasty. Genes associated with antimicrobial agents used for prophylaxis in arthroplasty, i.e., beta-lactam antibiotics, aminoglycosides, and chlorhexidine, were associated with PJI origin. S. epidermidis from PJIs were dominated by the ST2a, ST2b, ST5, and ST215 lineages.
In Paper IV, selective agar plates were used to investigate colonization with methicillin resistant S. epidermidis (MRSE) in patients scheduled for arthroplasty. MRSE were further characterized by WGS. A subset of patients was found to harbour PJI-associated S. epidermidis lineages in their microbiota before hospitalization, but no isolates belonging to the ST2a lineage nor any rifampicin-resistant isolates were retrieved.
Place, publisher, year, edition, pages
Örebro: Örebro University, 2019. p. 137
Series
Örebro Studies in Medicine, ISSN 1652-4063 ; 203
Keywords
Staphylococcus epidermidis, molecular epidemiology, prosthetic joint infections, whole genome sequencing, Staphylococcus pettenkoferi
National Category
General Practice Infectious Medicine
Identifiers
urn:nbn:se:oru:diva-76142 (URN)978-91-7529-309-7 (ISBN)
Public defence
2019-12-06, Örebro universitet, Campus USÖ, hörsal C1, Södra Grev Rosengatan 32, Örebro, 09:00 (English)
Opponent
Supervisors
2019-09-062019-09-062019-11-12Bibliographically approved